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Preface

This book is intended for undergraduate students with a minimal physical and math-
ematical background; its purpose is to provide them with an introduction to the basic
tools of the theory and technology of quantum information theory which compre-
hends quantum information proper, quantum communication, quantum computa-
tion, and quantum cryptography. The structure and contents of the book have been
suggested by the following two observations:

• the rich interdisciplinary context that has resulted from 20 years of joint efforts of
researchers from as different fields as quantum mechanics, both theoretical and
experimental, classical information theory, computer science, and cryptography;

• the lack of a textbook for undergraduate students that need to be guided step
by step through their many interconnections; indeed, the many existing books
address readers already actively researching in these fields.

Complying with the above two points, the book consists of the integrated con-
tributions of various experts and must not be taken as an overview of the results
so far obtained in their fields, rather as a textbook specifically thought for the class
of readers specified above. With this in mind, all the authors have concentrated on
those aspects they deemed important for an undergraduate student to be instructed
about. An effort has thus been made to clarify with theory, examples and practical
applications a series of carefully selected and correlated aspects of the theory, rather
than trying to comprehensively cover the whole of quantum information theory.

The book benefits from the past and present scientific activity of the authors both
as researchers and as teachers and from their personal viewpoints on the subjects
treated in the chapters. In particular, some important issues are approached from
different and stimulating perspectives that may only improve their comprehension.

Also, an extra flavor comes to the book from the participation of some of the
authors in the construction of what was known as “quantum probability,” a theory
which predated quantum information and has provided the latter with useful tech-
nical tools and ideas. Their chapters reflect the authors’ long acquaintance with the
intriguing relations between quantum mechanics and probability, thus offering an
opportunity to fully appreciate the subsequent developments and achievements.

The book consists of ten chapters; the first one by D. Petz, provides an introduc-
tion to the mathematical tools of quantum mechanics including the von Neumann

v



vi Preface

entropy and the quantum relative entropy. The second one by Y. Suhov is an intro-
duction to classical probability and information theory, with particular emphasis
on Shannon’s coding theorems. In chapter “Quantum Probability and Quantum
Information Theory” H. Maassen offers an introduction to the physics of quantum
mechanics with particular attention to its most puzzling aspects as entanglement and
the Bell’s inequalities. The presentation of the quantum entanglement phenomenon
is further developed by F. Benatti in chapter “Bipartite Quantum Entanglement”
with the use of entropic tools and techniques from quantum open system theory.
While chapter “Quantum Probability and Information Theory” and “Bipartite Quan-
tum Entanglement” mainly treat the quantum mechanics of finite-level systems,
in chapter “Field-Theoretical Methods” by R. Alicki concentrates instead on the
quantum mechanics of systems with infinitely many degrees of freedom. Quantum
statistical mechanics and quantum field theory are indeed becoming more and more
important in the recent developments of quantum information both theoretically and
experimentally.

Quantum information transmission with the quantum versions of Shannon’s clas-
sical coding theorems is the theme of chapter “Quantum Entropy and Information”
by N. Datta, while chapter “Photonic Realization of Quantum Information Proto-
cols” by M. Genovese and chapter “Physical Realizations of Quantum Informa-
tion” by F. De Melo and A. Buchleitner deal with the experimental achievements in
photonics, respectively, atomic physics that turned the puzzling aspects of quantum
mechanics into actual physical resources; finally, chapter “Quantum Cryptography”
by D. Bruss and T. Meyer and the last chapter by J. Kempe and T. Widick address
those applications of quantum mechanics to cryptography, respectively, computation
theory that so greatly contributed to the ever growing interest in the theoretical and
technological issues presented in this book.

All chapters contain examples, problems, and exercises whose aim is to make
the students actively interact with the text. The references are provided not with the
purpose of being exhaustive, an almost impossible task that is much better accom-
plished by the many existing advanced books and reviews. Rather, in view of the
specific class of readers addressed by this book, those references to the literature
have been selected that may help to integrate the authors viewpoints and to suggest
the reader a path toward the latest advances of quantum information theory.
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Hilbert Space Methods for Quantum
Mechanics

D. Petz

The mathematical backbone of quantum physics is provided by the theory of linear
operators on Hilbert spaces. In fact, quite a few concepts related to linear operators
were motivated by quantum theory.

1 Hilbert Spaces

The starting point of the quantum mechanical formalism is the Hilbert space. The
Hilbert space is a mathematical concept; it is a space in the sense that it is a complex
vector space which is endowed with an inner or scalar product 〈 · , · 〉. The linear
space Cn of all n-tuples of complex numbers becomes a Hilbert space with the inner
product

〈x, y〉 =
n∑

i=1

x∗i yi =
(
x∗1 , x∗2 , . . . , x∗n

)

⎛

⎜⎜⎜⎝

y1
y2
...

yn

⎞

⎟⎟⎟⎠ , (1)

where z∗ denotes the complex conjugate of the complex number z ∈ C. Another
example is the space of square-integrable complex-valued function on the real
Euclidean space Rn . If f and g are such functions then

〈 f, g〉 =
∫

Rn
f ∗(x) g(x) dx (2)

gives the inner product. The latter space is denoted by L2(Rn) and it is infinite
dimensional contrary to the n-dimensional space Cn . Below we are mostly satisfied
with finite-dimensional spaces. The inner product of the vectors |x〉 and |y〉 will be

D. Petz (B)
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary,
petz@renyi.hu

Petz, D.: Hilbert Space Methods for Quantum Mechanics. Lect. Notes Phys. 808, 1–31 (2010)
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2 D. Petz

often denoted as 〈x |y〉; this notation, sometimes called bra and ket, is popular in
physics. On the other hand, |x〉〈y| is a linear operator which acts on the vector |z〉 as

(|x〉〈y|) |z〉 = |x〉 〈y|z〉 ≡ 〈y|z〉 |x〉 . (3)

Therefore,

|x〉〈y| =

⎛

⎜⎜⎜⎝

x1
x2
...

xn

⎞

⎟⎟⎟⎠
(
y∗1 , y∗2 , . . . , y∗n

)
(4)

is conjugate linear in |y〉, while 〈x |y〉 is linear.

1.1 Orthogonal Expansions in a Hilbert Space

Let H be a complex vector space. A functional 〈 · , · 〉 : H×H→ C of two variables
is called inner product if

(1) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 (x, y, z ∈ H),
(2) 〈λx, y〉 = λ∗〈x, y〉, (λ ∈ C, x, y ∈ H),
(3) 〈x, y〉 = (〈y, x〉)∗ (x, y ∈ H),
(4) 〈x, x〉 ≥ 0 for every x ∈ H and 〈x, x〉 = 0 only for x = 0.

These conditions imply the Schwartz inequality

∣∣〈x, y〉∣∣2 ≤ 〈x, x〉 〈y, y〉 . (5)

The inner product determines a norm

‖x‖ := √〈x, x〉, (6)

which has the property

‖x + y‖ ≤ ‖x‖ + ‖y‖ . (7)

‖x‖ is interpreted as the length of the vector x . A further requirement in the defini-
tion of a Hilbert space that every Cauchy sequence must be convergent, that is, the
space is complete.

Exercise 1 Show that

‖x − y‖2 + ‖x + y‖2 = 2‖x‖2 + 2‖y‖2 (8)

which is called the parallelogram law.
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If 〈x, y〉 = 0 for the vectors x and y of a Hilbert space H, then x and y are called
orthogonal, in notation x ⊥ y. For any subset H ⊂ H, the orthogonal subset

H⊥ :=
{

x ∈ H : x ⊥ h ∀ h ∈ H
}

(9)

is a closed subspace.

Example 1 Let L2[a, b] be the set of square-integrable (complex-valued) functions
on the interval [a, b]. This is a Hilbert space with the inner product

〈 f, g〉 :=
∫ b

a
f ∗(x) g(x) dx (10)

and with the norm

‖ f ‖ :=
√∫ b

a
‖ f (x)‖2 dx . (11)

A family {xi } of vectors is called orthonormal if 〈xi , xi 〉 = 1 and 〈xi , x j 〉 = 0 if
i �= j . A maximal orthonormal system is called basis. The cardinality of a basis is
called the dimension of the Hilbert space. (The cardinality of any two bases is the
same.)

Example 2 The infinite dimensional analogue of Cn is the space �2(N):

�2(N) :=
{

x = (x1, x2, . . . ) : xn ∈ C,
∑

n

|xn|2 < +∞
}
. (12)

The inner product is

〈x, x ′〉 :=
∑

n

x∗n x ′n . (13)

The canonical basis in this space is the sequence δn (n = 1, 2, . . . ):

δn = (0, 0, . . . , 1, 0, . . . ) (1 is at the nth place). (14)

Theorem 1 Let x1, x2, . . . be a basis in a Hilbert space H. Then for any vector
x ∈ H the expansion

x =
∑

n

〈xn, x〉xn (15)

holds.
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Example 3 In the space L2[0, π ] the functions

fn(x) =
√

2

π
sin(n x) (16)

form a basis. Any function g ∈ L2[0, π ] has an expansion g = ∑
n an fn . The

convergence is in the L2-norm. (It is known from the theory of Fourier series that
for a continuous g the expansion is convergent point-wise as well.)

Theorem 2 (Projection theorem) Let M be a closed subspace of a Hilbert space
H. Any vector x ∈ H can be written in a unique way in the form x = x0 + y, where
x0 ∈M and y ⊥M.

The mapping P : x �→ x0 defined in the context of the previous theorem is called
orthogonal projection onto the subspace M. This mapping is linear:

P(λx + μy) = λPx + μPy. (17)

Moreover, P2 = P .
Let A : H → H be a linear mapping and e1, e2, . . . , en be a basis in the Hilbert

space H. The mapping A is determined by the vectors Aek , k = 1, 2, . . . , n. Fur-
thermore, the vector Aek is determined by its coordinates:

Aek = ck,1e1 + ck,2e2 + · · · + ck,nen . (18)

The numbers ci, j form an n × n matrix; it is called the matrix of the linear transfor-
mation A in the basis e1, e2, . . . , en . When B : H → H is another linear transfor-
mation, the matrix of the composition A◦B is the usual matrix product of the matrix
of A and that of B. If a basis is fixed, then it induces a one-to-one correspondence
between linear transformations and n × n matrices.

The norm of a linear operator A : H→ K is defined as

‖A‖ := sup{‖Ax‖ : x ∈ H, ‖x‖ = 1} . (19)

Exercise 2 Show that ‖AB‖ ≤ ‖A‖ ‖B‖.

Exercise 3 Let f be a continuous function on the interval [a, b]. Define a linear
operator M f : L2[a, b] → L2[a, b] as

Mf g = f g. (20)

(This is the multiplication by the function f .) Show that

‖M f ‖ = sup{| f (x)| : x ∈ [a, b]} . (21)
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1.2 The Adjoint of a Linear Operator

Let H and K be Hilbert spaces. If T : H→ K is a bounded linear operator, then its
adjoint T † : K→ H is determined by the formula

〈x, T y〉K = 〈T †x, y〉H (x ∈ K, y ∈ H). (22)

T ∈ B(H) is called self-adjoint if T † = T . T is self-adjoint if and only if 〈x, T x〉
is real for every vector x ∈ H.

Exercise 4 Show that any orthogonal projection is self-adjoint.

Example 4 Let S : �2(N) → �2(N) be the right shift defined as Sδn = δn+1 in the
canonical basis. Then

S†(x1, x2, x3, . . .) = (x2, x3, x4, . . .). (23)

In another way,

S†δ1 = 0, S†δn+1 = δn . (24)

S† is called the left shift.

Theorem 3 The properties of the adjoint are as follows:

(1) (A + B)† = A† + B†, (λA)† = λ∗A† (λ ∈ C),
(2) (A†)† = A, (AB)† = B† A†,
(3) (A−1)† = (A†)−1 if A is invertible,
(4) ‖A‖ = ‖A†‖.

Example 5 Let A : H→ H be a linear mapping and e1, e2, . . . , en be a basis in the
Hilbert space H. The i, j element of the matrix of A is 〈ei , Ae j 〉. Since

〈ei , Ae j 〉 = (〈e j , A†ei 〉)∗, (25)

this is the complex conjugate of the j, i element of the matrix of A†.

Example 6 For any A ∈ B(H), the operator A† A is self-adjoint.

An invertible operator U ∈ B(H) is called a unitary if U−1 = U †.

Example 7 For any A = − A† ∈ B(H), the operator

eA :=
∞∑

n=0

An

n! (26)

is a unitary.

Exercise 5 Show that the product of any two unitary operators is a unitary.
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1.3 Tensor Product of Hilbert Spaces and Operators

Let H and K be Hilbert spaces. Their algebraic tensor product consists of the formal
finite sums

∑

i, j

xi ⊗ y j (xi ∈ H, yi ∈ K). (27)

Computing with these sums, one should use the following rules:

(x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y, (λx)⊗ y = λ(x ⊗ y) ,

x ⊗ (y1 + y2) = x ⊗ y1 + x ⊗ y2, x ⊗ (λy) = λ(x ⊗ y) . (28)

The inner product is defined as

〈 ∑

i, j

xi ⊗ y j ,
∑

k,l

zk ⊗ wl

〉
=

∑

i, j,k,l

〈xi , zk〉〈y j , wl〉. (29)

When H and K are finite dimensional spaces, we arrive at the tensor product Hilbert
space H⊗K, otherwise the algebraic tensor product must be completed in order to
get a Hilbert space.

Example 8 If f ∈ H := L2(X, μ) and g ∈ K := L2(Y, ν), then f ⊗ g can be
interpreted as a function of two variables: f (x)g(y).

The tensor product of finitely many Hilbert spaces is defined similarly.
If e1, e2, . . . and f1, f2, . . . are bases in H and K, respectively, then {ei ⊗ e j :

i, j} is a basis in the tensor product space. This shows that

dim(H⊗K) = dim(H)× dim(H). (30)

Example 9 In the Hilbert space L2(R2) we can get a basis if the space is considered
as L2(R)⊗ L2(R). In the space L2(R) the Hermite functions

ϕn(x) = exp(−x2/2) Hn(x) (31)

form a good basis, where Hn(x) is the appropriately normalized Hermite polyno-
mial. Therefore, the two variable Hermite functions

ϕnm(x, y) := e−(x2+y2)/2 Hn(x)Hm(y) (n,m = 0, 1, . . . ) (32)

form a basis in L2(R2).

Example 10 Let {e1, e2, e3} be a basis in H and { f1, f2} be a basis in K. If [Ai j ] is
the matrix of A ∈ B(H1) and [Bkl ] is the matrix of B ∈ B(H2), then
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(A ⊗ B)(e j ⊗ fl) =
∑

i,k

Ai j Bklei ⊗ fk . (33)

It is useful to order the tensor product bases lexicographically: e1⊗ f1, e1⊗ f2, e2⊗
f1, e2 ⊗ f2, e3 ⊗ f1, e3 ⊗ f2. Fixing this ordering, we can write down the matrix of
A ⊗ B and we have

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 B11 A11 B12 A12 B11 A12 B12 A13 B11 A13 B12

A11 B21 A11 B22 A12 B21 A12 B22 A13 B21 A13 B22

A21 B11 A21 B12 A22 B11 A22 B12 A23 B11 A23 B12

A21 B21 A21 B22 A22 B21 A22 B22 A23 B21 A23 B22

A31 B11 A31 B12 A32 B11 A32 B12 A33 B11 A33 B12

A31 B21 A31 B22 A32 B21 A32 B22 A33 B21 A33 B22

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (34)

Let H be a Hilbert space. The k-fold tensor product H ⊗ · · · ⊗ H is called the
kth tensor power of H, in notation H⊗k . When A ∈ B(H), A(1)⊗ A(2) · · · ⊗ A(k) is
a linear transformation on H⊗k and it is denoted by A⊗k .

H⊗k has two important subspaces, the symmetric and the antisymmetric ones. If
v1, v2, . . . , vk ∈ H are vectors, then their antisymmetric tensor product is the linear
combination

v1 ∧ v2 ∧ · · · ∧ vk := 1√
k!

∑

π

(−1)σ(π)vπ(1) ⊗ vπ(2) ⊗ · · · ⊗ vπ(k) (35)

where the summation is over all permutations π of the set {1, 2, . . . , k} and σ(π)
is the number of inversions in π . The terminology “antisymmetric” comes from
the property that an antisymmetric tensor changes its sign if two elements are
exchanged. In particular, v1 ∧ v2 ∧ · · · ∧ vk = 0 if vi = v j for different i and j .

The computational rules for the antisymmetric tensors are similar to (28):

λ(v1 ∧ v2 ∧ · · · ∧ vk) = v1 ∧ v2 ∧ · · · ∧ v�−1 ∧ (λv�) ∧ v�+1 ∧ · · · ∧ vk (36)

for every � and

(v1 ∧ v2 ∧ · · · ∧ v�−1 ∧ v ∧ v�+1 ∧ · · · ∧ vk)

+ (v1 ∧ v2 ∧ · · · ∧ v�−1 ∧ v′ ∧ v�+1 ∧ · · · ∧ vk)

= v1 ∧ v2 ∧ · · · ∧ v�−1 ∧ (v + v′) ∧ v�+1 ∧ · · · ∧ vk . (37)

The subspace spanned by the vectors v1∧ v2∧ · · ·∧ vk is called the kth antisym-
metric tensor power of H, in notation ∧kH. So ∧kH ⊂ ⊗kH. If A ∈ B(H), then the
transformation ⊗k A leaves the subspace ∧kH invariant. Its restriction is denoted by
∧k A which is equivalently defined as
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∧k A(v1 ∧ v2 ∧ · · · ∧ vk) = Av1 ∧ Av2 ∧ · · · ∧ Avk . (38)

If e1, e2, . . . , en is a basis in H, then

{
ei(1) ∧ ei(2) ∧ · · · ∧ ei(k) : 1 ≤ i(1) < i(2) < · · · < i(k)) ≤ n

}
(39)

is a basis in ∧kH. It follows that the dimension of ∧kH is
(

n

k

)
if k ≤ n , (40)

otherwise for k > n the power ∧kH has dimension 0. Consequently, ∧nH has
dimension 1 and for any operator A ∈ B(H), we have

∧n A = λ× 1 . (41)

Exercise 6 Show that λ = det A in (41). Use this to prove that det(AB) = det A ×
det B.
Hint: Show that ∧k(AB) = (∧k A)(∧k B).

The symmetric tensor product of the vectors v1, v2, . . . , vk ∈ H is

v1 ∨ v2 ∨ · · · ∨ vk := 1√
k!

∑

π

vπ(1) ⊗ vπ(2) ⊗ · · · ⊗ vπ(k) , (42)

where the summation is over all permutations π of the set {1, 2, . . . , k} again. The
linear span of the symmetric tensors is the symmetric tensor power ∨kH. It has the
basis

{
ei(1) ∨ ei(2) ∨ · · · ∨ ei(k) : 1 ≤ i(1) ≤ i(2) ≤ · · · ≤ i(k) ≤ n

}
. (43)

Exercise 7 Give the dimension of ∨kH if dim(H) = n.

1.4 Positive Operators

The spectrum, sp(T ), of an operator T ∈ B(H) consists of all numbers λ ∈ C such
that the operator λ1−T does not have a bounded inverse. If H is finite dimensional,
then λ1− T does not have a bounded inverse if and only if there is a vector x �= 0
such that λx − T x = 0. In this case x is an eigenvector and λ is the corresponding
eigenvalue.

The eigenvalues of a self-adjoint matrix are real and the eigenvectors
corresponding to different eigenvalues are orthogonal. Therefore, the matrix (or the
corresponding Hilbert space operator) can be written in the form
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k∑

i=1

λi Ei , (44)

where λ1, λ2, . . . , λk are the different eigenvalues and Ei is the orthogonal projec-
tion onto the subspace spanned by the eigenvectors corresponding to the eigenvalue
λi , 1 ≤ i ≤ k.

Exercise 8 Let A ∈ B(H) and B ∈ B(H) be operators on the finite dimensional
spaces H and K. Show that

det(A ⊗ B) = (det A)m(det B)n, (45)

where n = dimH, m = dimK.
Hint: The determinant is the product of the eigenvalues.

Exercise 9 Show that ‖A ⊗ B‖ = ‖A‖ · ‖B‖.

T ∈ B(H) is called positive if 〈x, T x〉 ≥ 0 for every vector x ∈ H, in notation
T ≥ 0. A positive operator is self-adjoint.

Exercise 10 Show that T †T is positive for all T ∈ B(H). Show that an orthogonal
projection is positive.

Theorem 4 Let T ∈ B(H) be a self-adjoint operator and e1, e2, . . . , en be a basis
in the Hilbert space H. T is positive if and only if for any 1 ≤ k ≤ n the determinant
of the k × k matrix

(〈ei , T e j 〉)ki j=1 (46)

is positive.

The spectrum, in particular the eigenvalues of a positive operator, lies in R
+.

Conversely, if all the eigenvalues are positive for a self-adjoint operator acting on a
finite dimensional space, then it is positive. Positive matrices are also called positive
semi-definite.

Let A, B ∈ B(H) be self-adjoint operators. A ≤ B if B − A is positive. Of
positive operators B(H) � T ≥ 0 one can consider the square root

√
T ; the square

root of T †T , |T | = √
T †T , is called the modulus of T .

Let T ∈ B(H) and e1, e2, . . . , en be a basis in the Hilbert space H; the sum of
the diagonal matrix elements of T is called the trace of T ,

Tr T =
n∑

i=1

〈ei | T ei 〉 . (47)



10 D. Petz

It is independent of the orthonormal basis which is chosen to compute it and satisfies
the cyclicity property

Tr (A B) = Tr (B A) ∀A, B ∈ B(H) . (48)

Example 11 Let f : R
+ → R be a smooth function. f is called matrix monotone if

0 ≤ A ≤ B implies that f (A) ≤ f (B) . (49)

f is matrix monotone if and only for every positive operator A, X and for the real
parameter t ≥ 0,

∂

∂t
〈x, f (A + t X)x〉 ≥ 0 (50)

holds for every vector x which means that

∂

∂t
f (A + t X) ≥ 0. (51)

We want to show that the square root function is matrix monotone. Let

F(t) := √
A + t X . (52)

It is enough to see that the eigenvalues of F ′(t) are positive. Differentiating the
equality F(t)F(t) = A + t X , we get

F ′(t)F(t)+ F(t)F ′(t) = X. (53)

If F ′(t) = ∑
i λi Ei is the spectral decomposition, then

∑

i

λi (Ei F(t)+ F(t)Ei ) = X (54)

and after multiplication by E j from the left and from the right, we have for the trace

2λ j Tr
(

E j F(t) E j

)
= Tr

(
E j X E j

)
. (55)

Since both traces are positive, λ j must be positive as well.

Exercise 11 Show that the square function is not matrix monotone.
Hint: Choose A to be diagonal and

X =
(

1 1
1 1

)
. (56)
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Use the argument of the previous example for 2× 2 matrices.

Exercise 12 Show that the function

f (x) = −1

x
(57)

is matrix monotone.

Exercise 13 Use the formula

log x =
∫ ∞

0

( 1

1+ t
− 1

x + t

)
dt (58)

to show that the function f (t) = log t is matrix monotone.

Example 12 Let f : R
+ → R be a smooth function. f is called matrix convex if

0 ≤ A, B implies that f (λA + (1− λ)B) ≤ λ f (A)+ (1− λ) f (B) (59)

for any number 0 < λ < 1. f is matrix convex if and only for every positive operator
A and B

f
( A + B

2

)
≤ f (A)+ f (B)

2
(60)

holds.
We want to show that the square root function is matrix concave. This follows by

taking the square root of the inequality

A + B

2
≥

(√A +√B

2

)2
. (61)

1.5 The Spectral Theorem

The spectral theorem extends the results about discrete spectra (see Sect. 1.4) to
arbitrary self-adjoint operator A. Then the spectrum is not necessarily discrete and
the finite sum is replaced by an integral.

Let X be a complete separable metric space and H be a Hilbert space. In such
a case one considers the smallest σ -algebra (see chapter “Quantum Probability and
Quantum Information Theory”, Sect. 4) containing all open subsets relative to the
given metric: its measurable subsets are called Borel subsets. Assume that for each
Borel set B ⊂ X a positive operator E(B) ∈ B(H) is given such that

(1) 0 ≤ E(B) ≤ I , E(∅) = 0, E(C) = I ,
(2) If (Bi ) is a sequence of pairwise disjoint Borel subsets of X and B = ∪∞i=1 Bi ,

then
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E(B) |e〉 =
( ∞∑

i=1

E(Bi )
)
|e〉 (62)

for every vector e ∈ H.

In this case E is called a positive operator-valued measure, shortly POVM. In the
most important examples X is a finite set, the real line R, or the unit circle T.

We want to integrate a function f : X → C with respect to a POVM on X .
When X is a finite set,

∫

X
f (x) dE(x) =

∑

x∈X
f (x)E({x}) (63)

is a finite sum. In the general case, the definition of the integral can be reduced to
many integrals with respect to common measures. Given a vector e ∈ H,

μe(B) = 〈e, E(B)e〉 (64)

gives us a positive measure on the Borel sets of X .
We say that the integral

∫
X f (x) dE(x) = T ∈ B(H), if

〈e, T e〉 =
∫

X
f (x) dμe(x) (65)

holds for every e ∈ X .
A POVM E is called a projection-valued measure if E(B) is a projection opera-

tor for every Borel set B, that is E(B) = E(B)2.

Exercise 14 Let E be a projection-valued measure and let B1, B2 be disjoint Borel
set. Show that if a vector e is in the range of E(B1), then E(B2)e = 0. (Therefore,
E(B1) and E(B2) are orthogonal.)

The next theorem is the spectral theorem for a bounded self-adjoint operator.

Theorem 5 Let A = A† ∈ B(H). Then there exists a unique projection-valued
measure on the real line such that

A =
∫
λ dE(λ). (66)

Moreover, if B ⊂ R and the spectrum of A is disjoint, then E(B) = 0 and

f (A) =
∫

f (λ) dE(λ) (67)

for every continuous function defined on the spectrum of A.
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The projection-valued measure in the theorem is called the spectral measure of
the operator A. A similar result holds for unbounded self-adjoint operator A but
in this case A and f (A) are not defined everywhere. A similar theorem holds for
unitary operators, then the spectral measure is on the unit circle.

2 Postulates of Quantum Mechanics

The first postulate of quantum mechanics tells that to each quantum mechanical
system a Hilbert space H is associated. The (pure) physical states of the system
correspond to unit vectors of the Hilbert space. This correspondence is not one-
to-one. When f1 and f2 are unit vectors, the corresponding states are identical if
f1 = z f2 for a complex number z of modulus 1. Such z is often called phase.

2.1 n-Level Quantum Systems

A pure physical state of a system determines a corresponding state vector up to a
phase.

Example 13 The two-dimensional Hilbert space C2 is used to describe a two-level
quantum system called qubit. The canonical basis vectors (1, 0) and (0, 1) are usu-
ally denoted by | ↑〉 and | ↓〉, respectively. (An alternative notation is |1〉 for (0, 1)
and |0〉 for (1, 0).) Since the polarization of a photon is an important example of a
qubit, the state | ↑〉 may have the interpretation that the “polarization is vertical”)
and |↓〉 means that the “polarization is horizontal.”

To specify a state of a qubit we need to give a positive number r and a complex
number s such that r2 + |s|2 = 1. Then the state vector is

r |↑〉 + s |↓〉 . (68)

(Indeed, multiplying a unit vector s1 |↑〉 + s2 |↓〉, s1|2 + |s2|2 = 1, by an appropri-
ate phase, we can make the coefficient of |↑〉 positive and the corresponding state
remains the same, in the sense that it gives the same statistical predictions of the old
one.)

Splitting s into real and imaginary parts as s = a + ib, we have the constraint
r2 + a2 + b2 = 1 for the parameters (r, a, b) ∈ R

3.
We shall see that the space of all pure states of a qubit is conveniently visualized

as the unit sphere in the three-dimensional Euclidean space; it is called the Bloch
sphere.

Traditional quantum mechanics distinguishes between pure states and mixed
states. Mixed states are described by density matrices. A density matrix or statistical
operator is a positive operator of trace 1 on the Hilbert space. This means that the
space has a basis consisting of eigenvectors of the statistical operator and the sum of
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eigenvalues is 1. (In the finite dimensional case the first condition is automatically
fulfilled.) The pure states represented by unit vectors of the Hilbert space are among
the density matrices under an appropriate identification. If x = |x〉 is a unit vector,
then |x〉〈x | is a density matrix. Geometrically |x〉〈x | is the orthogonal projection
onto the linear subspace generated by x . Note that |x〉〈x | = |y〉〈y| if the vectors x
and y differ in a phase.

(A1) The physical states of a quantum mechanical system are described by statisti-
cal operators acting on the Hilbert space.

Example 14 A state of the spin (of 1/2) can be represented by the 2× 2 matrix

1

2

(
1+ x3 x1 − ix2

x1 + ix2 1− x3

)
. (69)

This is a density matrix if and only if x2
1 + x2

2 + x2
3 ≤ 1.

The second axiom is about observables.

(A2) The observables of a quantum mechanical system are described by self-
adjoint operators acting on the Hilbert space.

A self-adjoint operator A on a Hilbert space H is a linear operator H → H
which satisfies

〈Ax, y〉 = 〈x, Ay〉 (70)

for x, y ∈ H. Self-adjoint operators on a finite dimensional Hilbert space Cn are
n × n self-adjoint matrices. A self-adjoint matrix admits a spectral decomposition
A = ∑

i λi Ei , where λi are the different eigenvalues of A and Ei is the orthogo-
nal projection onto the subspace spanned by the eigenvectors corresponding to the
eigenvalue λi . The multiplicity of λi is exactly the rank of Ei .

Example 15 For a quantum spin 1/2 the matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(71)

are used to describe the spin of directions x, y, z (with respect to a coordinate sys-
tem). They are called Pauli matrices. Any 2× 2 self-adjoint matrix is of the form

A(x0,x) := x0σ0 + x1σ1 + x2σ2 + x3σ3 (72)

if σ0 stands for the unit matrix I . The density matrix (69) can be written as

1
2 (σ0 + x · σ) , x = (x1, x2, x3) , σ = (σ1, σ2, σ3) , (73)
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where ‖x‖ ≤ 1. Formula (73) makes an affine correspondence between 2×2 density
matrices and the unit ball in the Euclidean three-space. The extreme points of the
ball correspond to pure state and any mixed state is the convex combination of pure
states in infinitely many different ways (see the discussion in chapter “Quantum
Probability and Quantum Information Theory”, Sect. 3.5). In higher dimension the
situation is much more complicated.

Any density matrix can be written in the form

ρ =
∑

i

λi |xi 〉〈xi | (74)

by means of unit vectors |xi 〉 and coefficients λi ≥ 0,
∑

i λi = 1. Since ρ is self-
adjoint such a decomposition is deduced from the spectral theorem and the vectors
|xi 〉may be chosen as pairwise orthogonal eigenvectors and λi are the corresponding
eigenvalues. Under this condition (74) is called Schmidt decomposition. It is unique
if the spectrum of ρ is non-degenerate, that is, if there is no multiple eigenvalue.

2.2 Measurements

Quantum mechanics is not deterministic. If we prepare two identical systems in
the same state, and we measure the same observable on each, then the result of
the measurement may not be the same. This indeterminism or stochastic feature is
fundamental.

(A3) Let X be a finite set and for x ∈ X an operator Vx ∈ B(H) be given such
that

∑

x∈X
V †

x Vx = 1 . (75)

Such an indexed family of operators is a model of a measurement with values
in X . If the measurement is performed in a state ρ, then the outcome x ∈ X
appears with probability Tr

(
Vx ρ V †

x

)
and after the measurement the state of

the system is

Vx ρ V †
x

Tr
(

Vx ρ V †
x

) . (76)

A particular case is the measurement of an observable described by a self-adjoint
operator A with spectral decomposition

∑
i λi Ei . In this case X = {λi } is the set of

eigenvalues and Vi = Ei . One computes easily that the expectation of the random
outcome is Tr (ρ A). The functional A �→ Tr (ρ A) is linear and has two important
properties:
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1. if A ≥ 0, then Tr (ρ A) ≥ 0 and
2. Tr (ρ 1) = 1.

These two properties allow to see quantum states in a different way. If ϕ :
B(H)→ C is a linear functional such that

ϕ(A) ≥ 0 if A ≥ 0 and ϕ(1) = 1, (77)

then there exists a density matrix ρϕ such that

ϕ(A) = Tr
(
ρϕ A

)
. (78)

The functional ϕ associates expectation values with the observables.

2.3 Composite Systems

According to axiom (A1), a Hilbert space is associated with any quantum mechani-
cal system. Assume that a composite system consists of subsystems (1) and (2); they
are described by the Hilbert spaces H1 and H2. (Each subsystem could be a particle
or a spin, for example.) Then we have

(A4) The composite system is described by the tensor product Hilbert space H1 ⊗
H2.

When {e j : j ∈ J } is a basis in H1 and { fi : i ∈ I } is a basis in H2, then
{e j ⊗ f j : j ∈ J, i ∈ I } is a basis of H1 ⊗ H2. Therefore, the dimension of
H1⊗H2 is dimH1×dimH2. If Ai ∈ B(Hi ) (i = 1, 2), then the action of the tensor
product operator A1 ⊗ A2 is determined by

(A1 ⊗ A2)(η1 ⊗ η2) = A1η1 ⊗ A2η2 (79)

since the vectors η1 ⊗ η2 span H1 ⊗H2.
When A = A† is an observable of the first system, its expectation value in the

vector state ψ ∈ H1 ⊗H2 is

〈ψ, (A ⊗ 12)ψ〉 , (80)

where 12 is the identity operator on H2.

Example 16 The Hilbert space of two spins 1/2 is C2⊗C2. In this space, the vectors

e1 := |↑〉⊗ |↑〉 , e2 := |↑〉⊗ |↓〉 , e3 := |↓〉⊗ |↑〉 , e4 := |↓〉⊗ |↓〉 (81)

form a basis. The vector state

φ = |↑〉 ⊗ |↓〉 − |↓〉 ⊗ |↑〉√
2

(82)
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has a surprising property. Consider the observable

A :=
4∑

i=1

i |ei 〉〈ei |, (83)

which has eigenvalues 1, 2, 3, 4 and the corresponding eigenvectors are just the basis
vectors. Measurement of this observable yields the values 1, 2, 3, 4 with probabil-
ities 0, 1/2, 1/2, and 0, respectively. The 0 probability occurs when both spins are
up or both are down. Therefore in the vector state φ the spins are anti-correlated.

We consider now the composite system H1 ⊗ H2 in a state φ ∈ H1 ⊗ H2. Let
A ∈ B(H1) be an observable which is localized at the first subsystem. If we want
to consider A as an observable of the total system, we have to define an extension
to the space H1 ⊗H2. The tensor product operator A ⊗ I will do, I is the identity
operator of H2.

Lemma 1 Assume that H1 and H2 are finite dimensional Hilbert spaces. Let {e j :
j ∈ J } be a basis in H1 and { fi : i ∈ I } be a basis in H2. Assume that

φ =
∑

i, j

wi j e j ⊗ fi (84)

is the expansion of a unit vector φ ∈ H1 ⊗ H2. Set W for the matrix which is
determined by the entries wkl . Then W †W is a density matrix and

〈φ, (A ⊗ 1)φ〉 = Tr
(

A W †W
)
. (85)

Proof Let Ekl be an operator on H1 which is determined by the relations Ekle j =
δl j ek (k, l ∈ I ). As a matrix, Ekl is called matrix unit, it is a matrix such that (k, l)
entry is 1, all others are 0. Then

〈φ, (Ekl ⊗ 1)φ〉 =
〈

∑

i, j

wi j e j ⊗ fi , (Ekl ⊗ 1)
∑

t,u

wtu eu ⊗ ft

〉

=
∑

i, j

∑

t,u

w∗i jwtu〈e j , Ekleu〉〈 fi , ft 〉

=
∑

i, j

∑

t,u

w∗i jwtu δluδ jkδi t =
∑

i

w∗ikwil . (86)

Then we arrived at the (k, l) entry of W †W . Our computation may be summarized as

〈φ, (Ekl ⊗ 1)φ〉 = Tr Ekl(W
†W ) (k, l ∈ I ). (87)
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Since any linear operator A ∈ B(H1) is of the form A = ∑
akl Ekl (akl ∈ C), taking

linear combinations of the previous equations, we have

〈φ, (A ⊗ 1)φ〉 = Tr (A W †W ) . (88)

W †W is positive (see Exercise 10) and

Tr (W †W ) =
∑

i, j

|wi j |2 = ‖φ‖2 = 1 . (89)

Therefore it is a density matrix. ��
This lemma shows a natural way from state vectors to density matrices. Given a

density matrix ρ on H1 ⊗H2 there are density matrices ρi ∈ B(Hi ) such that

Tr (A ⊗ 1)ρ = Tr (A ρ1) (A ∈ B(H1)) (90)

and

Tr (1⊗ B)ρ = Tr (B ρ2) (B ∈ B(H2)). (91)

ρ1 and ρ2 are called reduced density matrices. (They are the quantum analogue of
marginal distributions.)

The proof of Lemma 1 contains the reduced density of |φ〉〈φ| on the first system;
it is W †W . One computes similarly that the reduced density on the second subsys-
tem is (W W †)t, where X t denotes the transpose of the matrix X . Since W †W and
(W W †)t have the same non-zero eigenvalues, the two subsystems are very strongly
connected if the total system is in a pure state.

Let H1 and H2 be Hilbert spaces and let dimH1 = m and dimH2 = n. It is well
known that the matrix of a linear operator on H1 ⊗H2 has a block matrix form

U = (
Ui j

)m
i, j=1 =

m∑

i, j=1

Ei j ⊗Ui j , (92)

relative to the lexicographically ordered product basis, where Ui j are n×n matrices.
For example,

A ⊗ 1 = (
Xi j

)m
i, j=1 , where Xi j = Ai j1n (93)

and

1⊗ B = (
Xi j

)m
i, j=1 , where Xi j = δi j B. (94)

Assume that

ρ = (
ρi j

)m
i, j=1 (95)
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is a density matrix of the composite system, then

Tr (A ⊗ 1 ρ) =
∑

i, j

Ai j Tr (1nρi j ) =
∑

i, j

Ai j Tr ρi j (96)

and this gives that for the first reduced density matrix we have

(ρ1)i j = Tr ρi j . (97)

We can compute similarly the second reduced density ρ2. Since

Tr (1⊗ B ρ) =
∑

i

Tr (B ρi i ) (98)

we obtain

ρ2 =
m∑

i=1

ρi i . (99)

The reduced density matrices might be expressed by the partial traces. Tr2 :
B(H1)⊗ B(H2)→ B(H1) and Tr1 : B(H1)⊗ B(H2)→ B(H2) are defined as

Tr 2(A ⊗ B) = A (Tr B) , Tr 1(A ⊗ B) = (Tr A) B . (100)

We have

ρ1 = Tr2ρ and ρ2 = Tr1ρ . (101)

Axiom (A4) tells about a composite quantum system consisting of two quantum
components. In the case of more quantum components, the formalism is similar and
more tensor factors appear. It may happen that the quantum system under study has
a classical and a quantum component; assume that the first component is classical.
Then the description by tensor product Hilbert space is still possible. A basis (|ei 〉)i
of H1 can be fixed and the possible density matrices of the joint system are of
the form

∑

i

pi |ei 〉〈ei | ⊗ ρ(2)i , (102)

where (pi )i is a probability distribution and ρ(2)i are densities on H2. Then the
reduced state on the first component is the probability density (pi )i (which may be
regarded as a diagonal density matrix) and

∑
i piρ

(2)
i is the second reduced density.

Another postulate of quantum mechanics tells about the time development of a
closed quantum system. If the system is not subject to any measurement in the time
interval I ⊂ R and ρt denotes the statistical operator at time t , then
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(A5) ρt = U (t, s)ρsU (t, s)† (t, s ∈ I ),

where the unitary propagator U (t, s) is a family of unitary operators such that

(i) U (t, s)U (s, r) = U (t, r),
(ii) (s, t) �→ U (s, t) ∈ B(H) is strongly continuous.

The first-order approximation of the unitary U (s, t) is the Hamiltonian:

U (t +Δt, t) = 1− i

h̄
H(t)Δt, (103)

where H(t) is the Hamiltonian at time t . If the Hamiltonian is time independent,
then

U (s, t) = exp

(
− i

h̄
(s − t)H

)
. (104)

In the approach followed here the density matrices are transformed in time; this
is the so-called Schrödinger picture of quantum mechanics [22]. When discrete time
development is considered, a single unitary U gives the transformation of the vector
state in the form ψ �→ Uψ or in the density matrix formalism ρ �→ UρU †. When
the unitary time development is viewed as a quantum algorithm in connection with
quantum computation, the term gate is used instead of unitary. So the gates consti-
tuting an algorithm are simply unitary operators.

2.4 State Transformations

Assume that H is the Hilbert space of our quantum system which initially has a
statistical operator ρ (acting on H). When the quantum systems are not closed, they
are coupled to another system, called environment. The environment has a Hilbert
space He and statistical operator ρe. Before interaction the total system has density
ρe⊗ρ. The dynamical change caused by the interaction is implemented by a unitary
and U (ρe⊗ρ)U † is the new statistical operator and the reduced density ρ̃ is the new
statistical operator of the quantum system we are interested in. The affine change
ρ �→ ρ̃ is typical for quantum mechanics and called state transformation. In this
way the map ρ �→ ρ̃ is defined on density matrices but it can be extended by linear-
ity to all matrices. In this way we obtain a trace-preserving and positivity-preserving
linear transformation.

The above-defined state transformation can be described in several other forms
and reference to the environment could be omitted completely. Assume that ρ is an
n× n matrix and ρe is of the form (zk z∗l )kl where (z1, z2, . . . , zm) is a unit vector in
the m-dimensional space He. (ρe is pure state.) All operators acting on He ⊗H are
written in a block matrix form; they are m×m matrices with n×n matrix entries. In
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particular, U = (Ui j )
m
i, j=1 and Ui j ∈ Mn . If U is a unitary, then U †U is the identity

and this implies that

∑

i

U †
ikUil = δkl1n . (105)

Formula (99) for the reduced density matrix gives

ρ̃ =
∑

i

(U (ρe ⊗ ρ)U †)i i =
∑

i,k,l

Uik(ρe ⊗ ρ)kl(U
†)li

=
∑

i,k,l

Uik(zk z∗l ρ)(Uil)
† =

∑

i

( ∑

k

zkUik

)
ρ

( ∑

l

zlUil

)†

=
∑

i

AiρA†
i , (106)

where the operators Ai := ∑
k zkUik satisfy

∑

p

A†
p Ap = 1 (107)

due to (105) and
∑

k |zk |2 = 1.

Theorem 6 Any state transformation ρ �→ E(ρ) can be written in the form

E(ρ) =
∑

p

Ap ρ A†
p, (108)

where the operator coefficients satisfy (107). Conversely, all linear mappings of this
form are state transformations.

Proof The first part of the theorem was obtained above. To prove the converse part,
we need to solve the equations

Ai :=
∑

k

zkUik (i = 1, 2, . . . ,m). (109)

Choose simply z1 = 1 and z2 = z3 = · · · = zm = 0 and the equations reduce to
Up1 = Ap. This means that the first column is given from the block matrix U and
we need to determine the other columns in such a way that U should be a unitary.
Thanks to condition (107) this is possible. Condition (107) tells us that the first
column of our block matrix determines an isometry which extends to a unitary. ��

The coefficients Ap in the operator sum representation are called the operation
elements of the state transformation. The terms quantum (state) operation and chan-
neling transformation are also often used instead of state transformation. The state
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transformations form a convex subset of the set of all positive trace-preserving linear
transformations. (It is not known what the extremal points of this set are.)

E is called completely positive if E⊗ id n is positivity preserving for the identical
mapping id n : Mn(C)→ Mn(C) on any matrix algebra.

Theorem 7 Let E : Mn(C) → Mk(C) be a linear mapping. Then E is completely
positive if and only if it admits a representation

E(A) =
∑

u

Vu A V †
u (110)

by means of some linear operators Vu : Cn → Ck .

This result was first proven by Kraus. It follows that stochastic mappings are
completely positive and the operator sum representation is also called Kraus repre-
sentation. Note that this representation is not unique. Let E : Mn(C)→ Mk(C) be
a linear mapping. E is determined by the block matrix (Xi j )1≤i, j≤k , where

Xi j = E(Ei j ). (111)

(Here Ei j denote the matrix units.) This is the block matrix representation of E .

Theorem 8 Let E : Mn(C) → Mk(C) be a linear mapping. Then E is completely
positive if and only if the representing block matrix (Xi j )1≤i, j≤k ∈ Mk(C)⊗Mn(C)
is positive.

Example 17 Consider the transpose mapping A �→ At on 2× 2 matrices:

(
x y
z w

)
�→

(
x z
y w

)
. (112)

The representing block matrix is

X =

⎛

⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟⎟⎠ . (113)

This is not positive, so the transpose mapping is not completely positive.

Example 18 Consider a positive trace-preserving transformation of the form E :
Mn(C) → Mm(C) such that its range consists of commuting operators. We show
that E is automatically a state transformation.

Since a commutative subalgebra of Mm(C) is the linear span of some pairwise
orthogonal projections Pk , one can see that E has the form
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E(A) =
∑

k

Pk Tr (Fk A) , (114)

where Fk is a positive operator in Mn(C); it induces the coefficient of Pk as a linear
functional on Mn(C).

We want to show the positivity of the representing block matrix:

∑

i j

Ei j ⊗
( ∑

k

PkTr (Fk Ei j )
)
=

∑

k

( ∑

i j

Ei j ⊗ Pk

)
◦

( ∑

i j

Ei j Tr (Fk Ei j )⊗ 1
)
,

(115)
where ◦ denotes the Hadamard (or entry-wise product) of nm×nm matrices. Recall
that according to Schur’s theorem the Hadamard product of positive matrices is
positive. The first factor is

[Pk, Pk, . . . , Pk]†[Pk, Pk, . . . , Pk] (116)

and the second factor is Fk ⊗ I ; both are positive. Consider the particular case
of (114) where each Pk is of rank 1 and

∑r
k=1 Fk = 1. Such a family of Fk’s

describe a measurement which associates the r -tuple (Tr ρF1,Tr ρF2, . . . ,Tr ρFr )

with the density matrix ρ. Therefore a measurement can be formulated as a state
transformation with diagonal outputs.

The Kraus representation and the block matrix representation are convenient
ways to describe a state transformation in any finite dimension. In the 2× 2 case we
have the possibility to expand the mappings in the basis σ0, σ1, σ2, σ3.

Any trace-preserving mapping E : M2(C)→ M2(C) has a matrix

T =
(

1 0
t T3

)
(117)

with respect to this basis, where T3 ∈ M3 and

E(w0σ0 + w · σ ) = w0σ0 + (t + T3w) · σ . (118)

The following examples of state transformations are given in terms of the T -rep-
resentation:

Example 19 (Pauli channels) t = 0 and T3 = Diag (α, β, γ ). Density matrices are
sent to density matrices if and only if

− 1 ≤ α, β, γ ≤ 1 (119)

for the real parameters α, β, γ .
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It is not difficult to compute the representing block matrix; we have

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1+ γ
2

0 0
α + β

2

0
1− γ

2

α − β
2

0

0
α − β

2

1− γ
2

0

α + β
2

0 0
1+ γ

2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (120)

X is unitarily equivalent to the matrix

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1+ γ
2

α + β
2

0 0

α + β
2

1+ γ
2

0 0

0 0
1− γ

2

α − β
2

0 0
α − β

2

1− γ
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (121)

This matrix is obviously positive if and only if

|1± γ | ≥ |α ± β|. (122)

For α = β = γ = p the positivity condition holds when
1

3
≤ p ≤ 1.

Exercise 15 Consider the linear transformation E : M2(C)→ M2(C) defined as

E(w0σ0 + w · σ) = w0σ0 +
(
w1√

3
, 0,

1

3
+ w3

3

)
· (σ1, σ2, σ3) . (123)

Show that this is a state transformation.
Hint: Compute the representing block matrix.

Example 20 The depolarizing channel

Ep,n : Mn → Mn, Ep,n(A) = p A + (1− p)
1

n
Tr (A) (124)

is trivially completely positive for 0 ≤ p ≤ 1. The representing block matrix is

X = p
∑

i j

Ei j ⊗ Ei j + 1− p

n
1⊗ 1. (125)
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The matrix

1

n

∑

i j

Ei j ⊗ Ei j (126)

is a self-adjoint idempotent (that is, a projection), so its spectrum is {0, 1}. Conse-
quently, the eigenvalues of X are

pn + 1− p

n
,

1− p

n
. (127)

They are positive when −1/(n2 − 1) ≤ p ≤ 1.

3 Some Applications

In the traditional approach to quantum mechanics, a physical system is described
in a Hilbert space: observables correspond to self-adjoint operators and statistical
operators are associated with the states. von Neumann associated an entropy quan-
tity with a statistical operator in 1927 [15] and the discussion was extended in his
book [16].

3.1 von Neumann Entropy

von Neumann’s argument was a “gedanken experiment” on the ground of phe-
nomenological thermodynamics which is not repeated here, only the conclusion is
[16, 20]. Assume that the density ρ is the mixture of orthogonal densities ρ1 and ρ2,
ρ = pρ1 + (1− p)ρ2. Then

pS(ρ1)+ (1− p)S(ρ2) = S(ρ)+ κp log p + κ(1− p) log(1− p) , (128)

where S is a certain thermodynamical entropy quantity, relative to the fixed temper-
ature and molecule density and κ a suitable proportionality constant, the Boltzman
constant of thermodynamics. (Remember that the orthogonality of states has a par-
ticular meaning in quantum mechanics.) From the two-component mixture, we can
easily move to an arbitrary density matrix ρ = ∑

i λi |ϕi 〉〈ϕi | and we have

S(ρ) =
∑

i

λi S(|ϕi 〉〈ϕi |)− κ
∑

i

λi log λi . (129)

This formula reduces the determination of the (thermodynamical) entropy of
a mixed state to that of pure states. The so-called Schatten decomposition∑

i λi |ϕi 〉〈ϕi | of a statistical operator is not unique although 〈ϕi , ϕ j 〉 = 0 is assumed
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for i �= j . When λi is an eigenvalue with multiplicity, the corresponding eigenvec-
tors can be chosen in many ways. If we expect the entropy S(ρ) to be independent of
the Schatten decomposition, then we are led to the conclusion that S(|ϕ〉〈ϕ|) must
be independent of the state vector |ϕ〉. This argument assumes that there are no
super-selection sectors, that is, any vector of the Hilbert space can be a state vector.
(von Neumann’s argument was somewhat different; see the original paper [15, 20].)
If the entropy of pure states is defined to be 0 as a kind of normalization, then we
have the von Neumann entropy formula

S(ρ) = −κ
∑

i

λi log λi = κTr η(ρ) (130)

if λi are the eigenvalues of ρ and η(t) = −t log t . For the sake of simplicity the
multiplicative constant κ will mostly be omitted.

It is worthwhile to note that if S(ρ) is interpreted as the uncertainty carried by
the statistical operator ρ, then (128) seems to be natural,

S(pρ1 + (1− p)ρ2) = pS(ρ1)+ (1− p)S(ρ2)+ H(p, 1− p) (131)

holds for an orthogonal mixture and Shannon’s classical information measure
is involved. The mixing property (131) essentially determines the von Neumann
entropy and tells us that the relation of orthogonal quantum states is classical. A
detailed axiomatic characterization of the von Neumann entropy is Theorem 2.1
in [18].

Theorem 9 Let ρ1 and ρ2 be density matrices and 0< p<1. The following inequal-
ities hold:

p S(ρ1)+ (1− p)S(ρ2) ≤ S(pρ1 + (1− p)ρ2),

S(pρ1 + (1− p)ρ2) ≤ p S(ρ1)+ (1− p)S(ρ2)+ H(p, 1− p). (132)

Proof The first inequality is an immediate consequence of the concavity of the
function η(t) = −t log t . In order to obtain the second inequality we benefit from
the formula

Tr A
(

log(A + B)− log A
)

=
∫ ∞

0
Tr A(A + t)−1 B(A + B + t)−1 dt ≥ 0 (A, B ≥ 0) (133)

and infer

Tr
(

p ρ1 log
(

p ρ1 + (1− p) ρ2

)
≥ Tr

(
p ρ1 log p ρ1

)
(134)
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and

Tr
(
(1− p)ρ2 log

(
p ρ1+ (1− p) ρ2

))
≥ Tr

(
(1− p) ρ2 log(1− p) ρ2

)
. (135)

Adding the latter two inequalities we obtain the second inequality of the theorem. ��
The von Neumann entropy is the trace of a continuous function of the density

matrix, hence it is an obviously continuous functional on the states. From a result
due to Fannes [7, 18], if an estimate

|S(ρ)− S(σ )| ≤ F(‖ρ − σ‖1) (136)

holds classically, that is for measures or for commuting ρ and σ , then the same
estimate holds also in the quantum case. This observation yields

Theorem 10 Let ρ1 and ρ2 be densities on a d-dimensional Hilbert space. If ε :=
‖ρ1 − ρ2‖1/2, then the inequality

|S(ρ1)− S(ρ2)| ≤ ε log(d − 1)+ η(ε)+ η(1− ε) (137)

holds, where ‖X‖1 := Tr (X† X)1/2 is the so-called trace norm.

The proof is found in [21]. Note that on an infinite dimensional Hilbert space the
von Neumann entropy is not continuous, unless restricted to a set {ρ : S(ρ) ≤ c}.

Most properties of the von Neumann entropy will be deduced from the behavior
of the relative entropy; see [18].

3.2 Relative Entropy

Assume that ρ1 and ρ2 are density matrices on a Hilbert space H, then their relative
entropy is

S(ρ1‖ρ2) =
{

Tr ρ1(log ρ1 − log ρ2) if supp ρ1 ≤ supp ρ2 ,

+∞ otherwise,
(138)

where supp X denotes the support projection of a linear operator X , namely, the pro-
jection onto the largest subspace over which X �= 0. Note that it is not a symmetric
function of the two arguments.

The relative entropy expresses statistical distinguishability and therefore it
decreases under any state transformation E :

S(ρ1‖ρ2) ≥ S(E(ρ1)‖E(ρ2)). (139)

This is Uhlmann’s monotonicity theorem [13, 17, 24]. The proof will be sketched.
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We need that for a matrix convex function f , the matrix form of the Jensen
inequality

f (C AC† + DB D†) ≤ C f (A)C† + D f (B)D† (140)

holds when CC† + DD† = 1. In particular, if f (0) = 0, then

f (C AC†) ≤ C f (A)C†, (141)

see [8]. f (t) = − log t is matrix monotone decreasing and matrix convex.
The other formula we need is the expression of the relative entropy in terms of

the relative modular operator (denoted by Δ). Let Δ = L R, where

La = ρ2a and Ra = aρ−1
1 (a ∈ B(H)). (142)

Since logΔ = log L + log R, we have a very useful expression for the relative
entropy [10]:

Tr
(
ρ1

(
log ρ1 − log ρ2

))
= 〈ρ1/2

1 , (− logΔ)ρ1/2
1 〉 , (143)

where 〈 X,Y 〉 = Tr(X† Y ) denotes the so-called Hilbert-Schmidt scalar product
of two matrices. The operator Δ0 is defined similarly from E(ρ1) and E(ρ2). The
relative entropy S(E(ρ1)‖E(ρ2)) is expressed by Δ0.

The proof of the Uhlmann monotonicity theorem can go as follows:

1. The adjoint map E† : B(K)→ B(H) of E defined by the Hilbert–Schmidt scalar
product is unit preserving and the Schwartz inequality holds:

|〈X , Y 〉|2 ≤ Tr
(

X† X
)

Tr
(

Y † Y
)
. (144)

2. The operator

V : x
√
E(ρ1) �→ E†(x)

√
ρ1 (145)

is a contraction with respect to the Hilbert–Schmidt norm ‖X‖2
HS = Tr (X† X).

3. V †ΔV ≤ Δ0. Therefore, f (Δ0) ≤ f (V †ΔV ) (decreasing), f (V †ΔV ) ≤
V † f (Δ)V (concavity). Therefore,

f (Δ0) ≤ V † f (Δ)V . (146)

4. Apply
√
E(ρ1) to the vector

√
ρ1:

〈√
E(ρ1) , f (Δ0)

√
E(ρ1)

〉
≤ 〈√

ρ1 , f (Δ)
√
ρ1

〉
. (147)
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Theorem 11 Let ρ123 be a density matrix for a system with three components:
B(H1 ⊗H2 ⊗H3). Then the strong subadditivity (SSA) inequality

S(ρ123)+ S(ρ2) ≤ S(ρ12)+ S(ρ23) (148)

holds, where ρ2, ρ12, and ρ23 are the reduced density matrices to the subsystems
indicated by the subscripts.

Proof An equivalent form of the strong subadditivity can be expressed by relative
entropies:

S
(
ρ12‖d1

−111 ⊗ ρ2

)
≤ S

(
ρ123‖d1

−111 ⊗ ρ23

)
. (149)

The reduced densities of ρ123 and d1
−111 ⊗ ρ23 are ρ12 and d1

−111 ⊗ ρ2. Hence
the monotonicity theorem for the relative entropy gives the inequality. ��

3.3 Fidelity

How close are two quantum states? There are many possible answers to this ques-
tion. Restricting ourselves to pure states, we have to consider two unit vectors
|ϕ〉 and |ψ〉. Quantum mechanics has used the concept of transition probability
|〈ϕ | ϕ〉|2 for a long time. This quantity is phase invariant; it lies between 0 and
1. It equals to 1 if and only if the two states coincide, that is, |ϕ〉 equals to |ψ〉 up to
a phase.

We call fidelity the square root of the transition probability, namely

F(|ϕ〉 , |ψ〉) := |〈ϕ | ψ〉| . (150)

Shannon used a nonnegative distortion measure, and we may regard

1− F(|ϕ〉 , |ψ〉) (151)

as a distortion function on quantum states. Under a quantum operation pure states
could be transformed into mixed states, hence we need extension of the fidelity

F
(
|ϕ〉〈ϕ|, ρ

)
= √〈ϕ | ρ | ϕ〉 (152)

or in full generality

F(ρ1, ρ2) = Tr
(√
ρ

1/2
1 ρ2 ρ

1/2
1

)
(153)
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for positive matrices ρ1 and ρ2. This quantity was studied by Uhlmann in a different
context [23] and he proved a variational formula:

Theorem 12

F(ρ1, ρ2) = inf
{√

Tr (ρ1G)Tr (ρ2G−1) : 0 ≤ G is invertible
}
. (154)

From Theorem 12 the symmetry of F(ρ1, ρ2) is obvious and we can easily
deduce the monotonicity of the fidelity under state transformation:

F
(
E(ρ1), E(ρ2)

)2 ≥ Tr
(
E(ρ1)G

)
Tr

(
E(ρ2)G

−1
)
− ε

≥ Tr
(
ρ1E†(G)

)
Tr

(
ρ2E†(G−1)

)
− ε , (155)

where E† is the adjoint of E with respect to the Hilbert–Schmidt inner product, ε > 0
is arbitrary, and G is chosen to be appropriate. It is well known that E† is unital and
positive; hence E†(G)−1 ≥ E†(G−1):

Tr
(
ρ1 E†(G)

)
Tr

(
ρ2 E†(G−1)

)
≥ Tr

(
ρ1 E†(G)

)
Tr

(
ρ2 E†(G)−1

)

≥ F(ρ1, ρ2)
2 . (156)

In this way the monotonicity is concluded:

Theorem 13 For a state transformation E the inequality

F
(
E(ρ1), E(ρ2)

)
≥ F(ρ1, ρ2) (157)

holds.

Another remarkable operational formula is [6]

F(ρ1, ρ2) = max
{
|〈ψ1|ψ2〉| : E(|ψ1〉〈ψ1|) = ρ1, (158)

E(|ψ2〉〈ψ2|) = ρ2 for some state transformation E
}
.

This variational expression reduces the understanding of the fidelity of arbitrary
states to the case of pure states. The monotonicity property is implied by this for-
mula easily.

Convergence in fidelity is equivalent to convergence in trace norm F(ρn, ρ
′
n)→

1 if and only if Tr |ρn − ρ′n| → 0. This property of the fidelity is a consequence of
the inequalities

1− F(ρ1, ρ2) ≤ 1

2
Tr |ρ1 − ρ2| ≤

√
1− F(ρ1, ρ2) . (159)
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Classical Information Theory

Y. Suhov

1 Entropy

There is no rule in the world
but through Chance and Chaos,
and entropies are messengers of Chance
and measures of Chaos.
All variables are random,
but some are more random than others.
From the series ‘Thus spoke Supervisor’.

1.1 Definitions and Examples

We begin with the definition of information gained by knowing that an event A has
occurred:

ι(A) = − log2 P(A). (1)

(A dual point of view is also useful (although more evasive), where ι(A) is the
amount of information needed to specify event A.) Here and below P stands for the
underlying probability distribution. So the rarer an event A, the more information we
gain if we know it has occurred. (More broadly, the rarer an event A, the more impact
it will have. For example, the unlikely event that occurred in 1938 when fishermen
caught a coelacanth – a prehistoric fish believed to be extinct – required a significant
change to beliefs about evolution and biology. On the other hand, the likely event of
catching a herring or a tuna would hardly imply any change in theories.)

It is obvious from the above equation that for independent events, A1 and A2, the
information relative to the joint events A1 and A2 (A1 ∩ A2) satisfies

ι(A1 ∩ A2) = ι(A1)+ ι(A2), (2)

Y. Suhov (B)
Statistical Laboratory, DPMMS, University of Cambridge, Cambridge, UK
yms@statslab.cam.ac.uk

Suhov, Y.: Classical Information Theory. Lect. Notes Phys. 808, 33–64 (2010)
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and for event A with p(A) = 1/2,

ι(A) = 1. (3)

A justification of this definition of information comes from the fact that any function
ι∗(A), which (i) depends on probability P(A) (i.e., obeys ι∗(A) = ι∗(A′) if P(A) =
P(A′)), (ii) is continuous in P(A), and (iii) satisfies the two aforementioned proper-
ties, coincides with ι(A).

Definition 1 Let X be a discrete random variable (RV) with finitely many distinct
values x1, x2, . . . , xm , taken with probabilities p = (p1, p2, . . . , pm). Then the
entropy of X is the expected amount of information gained on learning the value
of X :

h(X) = −
m∑

i=1

pi log2 pi . (4)

It is clear that the entropy h(X) depends on the probability distribution p, but not
on the values of X , so we will write interchangeably h(X), h(p1, . . . , pm), or even
just h(p). In addition, we will often use notation p(xi ) instead of pi , writing

h(X) = −
∑

xi

p(xi ) log2 p(xi ) = E− log2 p(X). (5)

Here and below, symbol E stands for the expectation, relative to an underlying
probability distribution; in some cases we will need to specify which particular
probability distribution we bear in mind.

Thus, if we consider a random variable φ(X) where g is a one-to-one function
then h(φ(X)) = h(X).

Note an unusual form of a random variable under expectation in (5); it is
log2 p(X). It takes values − log2 p1, . . ., − log2 pm , with probabilities p1, . . ., pm ,
respectively. It may seem tautological, but such a tautology greatly simplifies further
analysis.

As some of the probabilities may be equal to 0, we will adopt the convention that
0 log 0 = 0 (by continuity lim

x→0+ − x log2 x = 0).

Example 1 If X is a Bernoulli(p) random variable (taking the value 0 with proba-
bility 1− p and 1 with probability p), then

h(X) = −p log2 p − (1− p) log2(1− p). (6)

Many authors write h(p) for this function (further abusing the notation). We too
will use this notation on occasions.

For p = 0 or 1, X is deterministic and h(X) = 0. On the other hand, for p = 1/2,
X is “as random as it can be” and h(X) = 1, the maximum value for random
variables taking two values, see Fig. 1. This fits in with our intuition as to how a
sensible measure of uncertainty should behave.
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Fig. 1 The entropy of a Bernoulli(p) variable for different p

Further, h′′(p) = − log2 e/(p(1− p)) ≤ 0, that is, the function h(p) is concave.

Example 2 If X is a uniform(n) random variable, with P(X = x j ) = 1

n
, j =

1, . . . , n, then

h(X) = log2 n. (7)

Definition 1 can be extended to the case of random variables taking countably
many values x1, x2, . . . by replacing the sum from 1 to n with a sum from 1 to ∞
(here we adopt the convention that if the sum −∑+∞

i=1 pi log2 pi diverges, then the
entropy is infinite).

Example 3 Let X be a geometric(p) random variable, with P(X = r) = (1 − p)pr

for r = 0, 1, . . .. Then

h(X) =
∑

r
P(X = r)

(− log2(1− p)− r log2 p
)

= − log2(1− p)− p

1− p
log2 p,

(8)

since EX = p/(1− p).

For a Poisson(λ) random variable X , with P(X = r) = (λr/r !)e−λr for r =
0, 1, . . ., the entropy h(X) looks rather ugly:

h(X) =
∑

P(X = r)

(
λ

ln 2
− r log2 λ+ log2(r !)

)

= λ

ln 2
− λ log2 λ+

∑
P(X = r)

r∑

l=0

log2 l

= λ

ln 2
− λ log2 λ+

∞∑

r=0

P(X ≥ r) log2 r .

(9)
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An easy observation is that in the discrete case, entropy h(X) is always non-
negative: h(X) ≥ 0. This is because the sum in the right-hand side of (4) and (5)
contains only non-negative terms, i.e., − log2 pi ≥ 0 as 0 ≤ pi ≤ 1. Moreover,
h(X) > 0 unless X is a deterministic random variable, that is, X takes some value
with probability 1 (and hence all other values with probability 0).

Definition 2 Let X be a random variable with a probability density function p(x).
Then the differential entropy of X is defined in analogy with the discrete case:

h(X) = −
∫

p(x) log2 p(x)dx . (10)

Example 4

1. If X is uniform(α, β), and p(x) = 1

β − α 1(α,β)(x), with 1Δ the characteristic

function of the interval Δ and −∞ < α < β < +∞, then

h(X) = log2(β − α) . (11)

2. Let X be a normal(μ, σ ) random variable, with −∞ < μ < +∞, σ > 0, and

p(x) = 1√
2πσ

exp

[
− (x − μ)

2

2σ 2

]
for −∞ < x < +∞.

Then

h(X) = 1

2

[
1+ log2(π e σ 2)

]
. (12)

3. If X is an exponential(λ) random variable, with λ > 0 and p(x) = λe−λ x 1(x >
0), then

h(x) = 1

ln 2

(
1− log2 λ

)
. (13)

Unlike the entropy of a discrete random variable, the differential entropy may be
negative: you can see it in all examples above.

The entropy and the differential entropy h(X) are used to “measure” an amount
of randomness (or uncertainty) in a given random variable X . Despite its rather
straightforward appearance (and a good deal of research), h(X) still is a concept
full of mystery, and quantum information theory only made it more enigmatic (see
chapters “Hilbert Space Methods for Quantum Mechanics,” “Bipartite Quantum
Entanglement,” and “Quantum Entropy and Information”).

The entropy and the differential entropy are often called Shannon entropies, in
honor of C. Shannon. In fact, Shannon was not the first scientist to use this quantity;
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it was used long before him in thermodynamic and statistical physics, by authors like
Carnot, Clausius, Boltzmann, Gibbs, and Helmholtz. However, he was the pioneer
in using the concept of entropy in the context of information theory (in fact, the
whole context of information theory as Shannon saw it was based on the concept
of entropy, although, admittedly, the importance of entropy in this area was stressed
some 20 years earlier by Hartley). There is an unconfirmed legend that in the begin-
ning of information theory, Shannon went to Princeton to see J. von Neumann who
was doing ground-breaking research in (classical) computer science at that time.
Shannon presented his preliminary findings to von Neumann and said that he needed
a kind of measure of randomness. Von Neumann replied that in his view it should
be entropy and wrote down its definition. (Von Neumann himself used the quantum
analog of entropy, again 20 or so years earlier, for mixed states in Hilbert space
(although to a rather limited extent), hence the term von Neumann entropy in the
context of quantum information theory.) Then von Neumann said to Shannon “Try
it. Nobody understands what it is in reality, so you may well get away with it.”

A profound analogy with statistical physics is that, as maximum entropy states
play a significant role within statistical physics, maximum entropy probability dis-
tributions naturally arise in probability and statistics.

1.2 Joint Entropy, Conditional Entropy, Relative Entropy,
Mutual Entropy

In this section we consider discrete random variables only. The use of entropy in
information theory is almost always related to joint random variables. In this regard,
the concepts of joint, conditional, relative, and mutual entropies are of particular
importance.

From now on log stands for log2.

Definition 3 Given a pair of random variables, X,Y , with values xi and y j , the joint
entropy h(X,Y ) is defined by

h(X,Y ) = −
∑

xi ,y j

pX,Y (xi , y j ) log pX,Y (xi , y j ) = E− log pX,Y (X,Y ). (14)

Here and below, pX,Y (xi , y j ) = P(X = xi ,Y = y j ) denotes the joint probability.
The expectation in (14) is taken relative to pX,Y . Thus, h(X,Y ) is the entropy of the
random variable (or the random vector) (X,Y ) with values (xi , y j ).

The conditional entropy, h(X |Y ), of a random variable X , given random variable
Y , is defined as the expected amount of information gained from observing X given
that a value of Y is known:

h(X |Y ) = −
∑

xi ,y j

pX,Y (xi , y j ) log pX |Y (xi |y j ) = E− log pX |Y (X |Y ). (15)
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Here and below, pX |Y (xi |y j ) denotes the conditional probability P(X = xi |Y =
y j ). The expectation in (14) is again taken relative to pX,Y . As follows from equa-
tions (14) and (15),

h(X |Y ) = h(X,Y )− h(Y ). (16)

Note that in general h(X |Y ) �= h(Y |X). Also, h(X |Y ) is a mixture of entropies
h

(
pX |Y ( · |y j )

)
of conditional distributions pX |Y ( · |y j ), with coefficients pY (y j ).

Formally

h(X |Y ) =
∑

y j

pY (y j )h
(
pX |Y ( · |y j )

)
, (17)

where

h
(
pX |Y ( · |y j )

) = −
∑

xi

pX |Y (xi |y j ) log pX |Y (xi |y j ). (18)

Next, if random variables X and Y take values from the same (finite or countable)
set (say I ), and the marginal probability pY (x) = P(Y = x) > 0∀x ∈ I , then the
relative entropy h(X ||Y ) (the entropy of X relative to Y ) is defined by

h(X ||Y ) =
∑

x

pX (x) log
pX (x)

pY (x)
= E− log

pY (X)

pX (X)
. (19)

Here and below, pX and pY stand for the probability distributions of X and Y ,
respectively (pX (x) = P(X = x) and pY (x) = P(Y = x), x ∈ I ). The expectation
in (19) is taken relative to pX .

Finally, the mutual information between X and Y is defined as

ι(X : Y ) = E log
pX,Y (X,Y )

pX (X)pY (Y )

=
∑

x,y

pX,Y (x, y) log
pX,Y (x, y)

pX (x)pY (y)

= h(X)+ h(Y )− h(X,Y ).

(20)

The expectation in (20) is taken relative to pX,Y . In terms of the relative entropy,
ι(X :Y ) = h X⊗Y (X,Y ). Here X ⊗ Y denotes the pair of independent random vari-
ables, one of which is distributed as X and the other as Y . Physically, ι(X : Y )
measures the amount of information about X conveyed by Y (and vice versa). Note
that the mutual information is symmetric:

ι(X : Y ) = ι(Y : X), i.e., h(X)− h(X |Y ) = h(Y )− h(Y |X) . (21)
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Of course, if X and Y are independent then ι(X : Y ) = 0.
All entropies introduced in Definitions 1 and 3 are related to each other. One

entropy is helpful in proving properties of another and vice versa. We begin our
analysis with

Theorem 1 (The Gibbs inequality) For any random variables X and Y , with the
same set of values I ,

h(X ||Y ) ≥ 0 . (22)

Moreover, equality in (22) is attained if and only if pX (i) = pY (i), i ∈ I , that is, X
and Y are identically distributed (have the same distribution).

Proof The bound

log x ≤ x − 1

ln 2
(23)

holds for each x > 0, with equality if and only if x = 1. Denoting I ′ = {i : pX (i) >
0}, we have

∑

i

pX (i) log
pY (i)

pX (i)
=

∑

i∈I ′
pX (i) log

pY (i)

pX (i)
≤ 1

ln 2

∑

i∈I ′
pX (i)

(
pY (i)

pX (i)
− 1

)

= 1

ln 2

(
∑

i∈I ′
pY (i)−

∑

i∈I ′
pX (i)

)
= 1

ln 2

(
∑

i∈I ′
pY (i)− 1

)
≤ 0. (24)

For equality we need (a)
∑

i∈I ′ pY (i) = 1, i.e., pY (i) = 0 when pX (i) = 0, and (b)
pY (i)/pX (i) = 1 for i ∈ I ′.

Theorem 1 will be helpful in the proof of Theorem 2.

Theorem 2

1. If random variable X takes at most m distinct values, then

0 ≤ h(X) ≤ log m . (25)

The left-hand equality occurs if and only if X takes a single value and the right-
hand equality if and only if X takes m values with equal probabilities: P(X =
xi ) = 1

m
, i = 1, . . . ,m.

2. For every pair of random variables X, Y ,

h(X,Y ) ≤ h(X)+ h(Y ) , (26)

with equality if and only if X and Y are independent.
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Proof Use the Gibbs inequality (Theorem 1)

1. with {p(i)} being the distribution of X and p′(i) = 1/m, 1 ≤ i ≤ m and
2. with i being a pair (i1, i2) of values of X and Y , p(i) = pX,Y (i1, i2) being the

joint distribution of X and Y and p′(i) = pX (i1)pY (i2), the product of their
marginal distributions.

Then

1. h(X) = −∑
i p(i) log p(i) ≤ ∑

i p(i) log m = log m,
2. ∀X,Y ,

h(X,Y ) = −
∑

(i1,i2)

pX,Y (i1, i2) log pX,Y (i1, i2)

≤ −
∑

(i1,i2)

pX,Y (i1, i2)× log
(

pX (i1)pY (i2)
)

= −
∑

i1

pX (i1) log pX (i1)−
∑

i2

pY (i2) log pY (i2)

= h(X)+ h(Y ).

(27)

We used here the fact that
∑

i2
pX,Y (i1, i2) = pX (i1),

∑
i1

pX,Y (i1, i2) =
pY (i2).

Lemma 1 (The pooling inequality) For any q1, q2 ≥ 0, with q1 + q2 > 0,

−(q1 + q2) log (q1 + q2) ≤ −q1 log q1 − q2 log q2

≤ −(q1 + q2) log
q1 + q2

2
; (28)

the left-hand equality occurs if and only if q1q2 = 0 (i.e., one of the values q1, q2
vanishes) and the right-hand equality if and only if q1 = q2.

Proof Bound (28) is equivalent to

0 ≤ h

(
q1

q1 + q2
,

q2

q1 + q2

)
≤ log 2 (= 1) . (29)

Lemma 1 means that when you “glue” together values of a random variable you
diminish the corresponding contribution to the entropy. On the other hand, if you
“re-distribute” the probabilities making them equal you increase the contribution.

An immediate corollary of Lemma 1 is the following

Theorem 3 Suppose that a random variable X is a function of random variable Y ,
i.e., X = φ(Y ). Then

h(X) ≤ h(Y ), (30)

with equality if and only if φ is invertible.
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Proof Indeed, if φ is invertible then the probability distributions of X and Y differ
only in the order of probabilities, which does not change the entropy. If φ “glues”
some values y j then you can repeatedly use the left-hand side of the pooling inequal-
ity.

Theorem 4 (The Fano inequality) Suppose a random variable X takes m > 1 val-
ues, and one of them has probability (1− ε). Then

h(X) ≤ G(ε)+ ε log (m − 1), (31)

where

G(ε) = −ε log ε − (1− ε) log (1− ε). (32)

Proof Suppose that p1 = p(x1) = 1− ε. Then

h(X) = h(p1, . . . , pm) = −
m∑

i=1

pi log pi = −p1 log p1 − (1− p1) log (1− p1)

+ (1− p1) log (1− p1)−
m∑

i=2

pi log pi

= h(p1, 1− p1)+ (1− p1)h

(
p2

1− p1
, . . . ,

pm

1− p1

)
;

(33)

in the right-hand side the first term is G(ε) and the second does not exceed
ε log (m − 1).
The Fano inequality shows how the entropy h(X) grows when X is “near” a constant
random variable.

Definition 4 Given a triple of random variables, X , Y , and Z , we say that X and Y
are conditionally independent, given Z , if

p(X = x,Y = y|Z = z) = p(X = x |Z = z)p(Y = y|Z = z) (34)

for any z with p(Z = z) > 0 and all x and y.

For the conditional entropy you immediately obtain

Theorem 5

1. For all random variables X and Y ,

0 ≤ h(X |Y ) ≤ h(X); (35)
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the left-hand equality occurs if and only if X is a function of Y and the right-hand
equality if and only if X and Y are independent.

2. For all random variables X, Y, and Z,

h(X |Y, Z) ≤ h(X |Y ) ≤ h(X |φ(Y )) ; (36)

the left-hand equality occurs if and only if X and Z are conditionally indepen-
dent given Y and the right-hand equality if and only if X and Y are conditionally
independent given φ(Y ).

Proof

1. The left-hand bound in (31) follows from the definition (see (14)). The right-hand
bound follows from (35) and (25). The left-hand equality in (35) is equivalent to
h(X,Y ) = h(Y ); the last equality occurs if and only if, with probability 1, the
map (X,Y ) �→ Y is invertible which means that X is a function of Y . The
right-hand equality in (35) occurs if and only if h(X,Y ) = h(X)+ h(Y ), i.e., X
and Y are independent.

2. For the left-hand bound, use a formula analogous to (16)

h(X |Y, Z) = h(X, Z |Y )− h(Z |Y ) (37)

and an inequality analogous to (16):

h(X, Z |Y ) ≤ h(X |Y )+ h(Z |Y ) , (38)

with equality if and only if X and Z are conditionally independent given Y . For
the right-hand bound, use (i) a formula that is a particular case of (37)

h(X |Y, φ(Y )) = h(X,Y |φ(Y ))− h(Y |φ(Y )) , (39)

together with the remark that

h(X |Y, φ(Y )) = h(X |Y ) (40)

and (ii) an inequality which is a particular case of (38):

h(X,Y |φ(Y )) ≤ h(X |φ(Y ))+ h(Y |φ(Y )) , (41)

with equality if and only if X and Y are conditionally independent given φ(Y ).

Theorem 6 (The generalized Fano inequality) For a pair of random variables, X
and Y , with values x1, . . . , xm and y1, . . . , ym if

m∑

j=1

p(X = x j ,Y = y j ) = 1− ε, (42)
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then

h(X |Y ) ≤ G(ε)+ ε log (m − 1), (43)

where G(ε) is defined in (32).

Proof Denoting ε j = p(X �= x j |Y = y j ), you can write

∑

j

pY (y j )ε j =
∑

j

p(X �= x j ,Y = y j ) = ε. (44)

By definition of the conditional entropy, the Fano inequality, and concavity of func-
tion G(ε),

h(X |Y ) ≤
∑

j

pY (y j )
(

G(ε j )+ ε j log (m − 1)
)

≤
∑

j

pY (y j )G(ε j )+ ε log (m − 1) ≤ G(ε)+ ε log (m − 1).
(45)

Most of the properties listed are extended to the case of random vectors.

Theorem 7

1. For every pair of random vectors, X(n)=(X1, . . . , Xn) and Y(n) = (Y1, . . . ,Yn),

h(X(n)) =
n∑

i=1

h(Xi |X(i−1)) ≤
n∑

i=1

h(Xi ), (46)

with equality if and only if X1, . . . , Xn are independent.
2. For every pair of random vectors, X(n) = (X1, . . . , Xn) and Y(n) =
(Y1, . . . ,Yn),

h(X(n)|Y(n)) ≤
n∑

i=1

h(Xi |Y(n)) ≤
n∑

i=1

h(Xi |Yi ), (47)

with the left-hand equality if and only if X1, . . . , Xn are conditionally indepen-
dent, given Y(n), and the right-hand equality if and only if, for each i = 1, . . . , n,
Xi and {Yr : 1 ≤ r ≤ n, r �= i} are conditionally independent, given Yi .

The proof repeats the previously used arguments.
An immediate corollary of Theorems 2 and 4 is the following:

Theorem 8 For all random variables X and Y and any function φ,

0 ≤ ι(X : φ(Y )) ≤ ι(X : Y ) . (48)
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The left-hand equality occurs if and only if X and φ(Y ) are independent and the
right-hand equality if and only if X and Y are conditionally independent, given
φ(Y ).

Note that X and Y in Definition 4 and Theorem 9 may be random vectors. In
addition, for a pair of random vectors, X(n) and Y(n), Theorem 8 yields the following
theorem:

Theorem 9

1. For all random vectors X(n) = (X1, . . . , Xn) and Y(n) = (Y1, . . . ,Yn),

ι(X(n) : Y(n)) ≥ h(X(n))−
n∑

i=1

h(Xi |Y(n)) ≥ h(X(n))−
n∑

i=1

h(Xi |Yi ) . (49)

2. If X1, . . . , Xn are independent, then

ι(X(n) : Y(n)) ≤
n∑

i=1

ι(Xi : Y(n)) . (50)

Observe that the right-hand side of (50) is always

≥
n∑

i=1

ι(Xi : Yi ) . (51)

An important special case is where the connection between entry Xi and vector
Y(n) is through Yi , the corresponding entry Yi , that is, ∀ sample values x of X and
y(n) = (y1, . . . , yn) of Y(n):

P(Xi = x |Y(n) = y(n)) = P(Xi = x |Yi = yi ). (52)

In this case, ι(Xi : Y(n)) = ι(Xi : Yi ), and bound (50) becomes

ι(X(n) : Y(n)) ≤
n∑

i=1

ι(Xi : Yi ) . (53)

2 Source Coding

Encode in the 15th century, decode in the 21st.
(The Da Vinci First Coding Principle)
From the series ‘Theorems never learned’
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2.1 Introduction to Coding

A typical scheme used in information transmission is as follows:

A message source → An encoder → A channel → A decoder → A destination

Consider the following example:

• A message source: A Cambridge college choir.
• An encoder: A BBC recording unit. It translates the sound to a binary array and

writes it to a CD or DVD track. A disk is then produced and put on the market.
• A channel: A customer in Australia buys a CD or DVD on Amazon.com; the disk

is mailed to him/her and received by the customer who occasionally plays it. The
channel is subject to “noise”: possible damage (mechanical, electrical, chemical,
etc.) incurred during transportation and use.

• A decoder: A CD or DVD player in Australia.
• A destination: An audience in Australia.
• The goal: To ensure high-quality sound despite possible damage.

In fact, a CD (and to a lesser degree a DVD) can sustain damage done by a needle
while making a neat hole in it or by a tiny drop of acid (you are not encouraged to
make such an experiment!)

In technical terms, typical goals of information transmission are

• fast encoding of information,
• reliable transmission of encoded messages,
• effective use of the channel available (i.e., maximum transfer of information per

unit time or space),
• fast decoding, and
• correcting errors (as many as possible) introduced by noise in the channel.

As usual, these goals contradict each other, and one has to find an optimal solu-
tion. Shannon’s coding theorems provide an effective quantitative assessment of
what can and what cannot be achieved.

The first operation in the above scheme is encoding. The aims of encoding are

• compressing data to reduce redundant information contained in a message,
• protecting data from unauthorized users, and
• enabling errors to be corrected.

So, we start by studying sources and encoders. A standard model is where a
source emits a sequence of letters,

u1 u2 . . . un . . . , (54)

where u j ∈ I , I (= Im) is an m-element set {1, . . . ,m} (a source alphabet). For
instance, it may be a literary English text: here m = 26 + 7, 26 letters plus 7
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punctuation symbols: . , : ; – () . (Sometimes one adds ? ! ‘ ’ and ” .) A telegraph
English corresponds to m = 27. In the above example of DVD recording it is an
analog signal quantified according to a grid of values of relevant parameters (the
spectrum of sound and light harmonics and their amplitudes); the value of m reaches
several thousands. The coding process in this example is going in parallel with the
process of message emission.

A common approach is to consider (54) as a sample from a random source, i.e.,
a sequence of random variables

U1, U2, . . . , Un, . . . (55)

and try to develop a theory for a reasonable class of such sequences.

Example 5

1. The simplest example of a random source is a sequence of independent, identi-
cally distributed (IID) random variables:

P(U1 = u1, U2 = u2, . . . , Uk = uk) =
k∏

j=1

p(u j ) , (56)

where p(u) = P(U j = u), u ∈ I , is the marginal distribution of a single variable.
A random source with IID symbols is often called a Bernoulli source.
A particular case where p(u) does not depend on u ∈ U (and hence equals
1/m) corresponds to the equiprobable Bernoulli source.
A good intuitive model of a Bernoulli source (which Shannon used a lot) is a
sequence of outcomes of a coin toss or the die cast; the coin and the die can be
biased or unbiased.

2. The next example is a Markov source where the symbols form a Markov chain
(M.c.):

P(U1 = u1, U2 = u2, . . . , Uk = uk) = λ(u1)

k−1∏

j=1

P(u j , u j+1) , (57)

where, following a Cambridge tradition, λ(u) are initial probabilities, whereas
P(u, u′) = P(u′|u) are probabilities of transition:

λ(u) = P(U1 = u), P(u, u′) = P(Ui+1 = u′|U j = u), u, u′ ∈ I . (58)

A Markov source is called stationary if

P(U j = u) = p(u), j ≥ 1, (59)

i.e., p = {p(u)} is an invariant vector for matrix P = {P(u, u′)}: pP = p.
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3. A “degenerate” example of a Markov source is where a source emits repeated
symbols. Here,

P(U1 = U2 = · · · = Uk = u) = q(u), u ∈ I,

P(Uk �= Uk′) = 0, 1 ≤ k < k′,
(60)

where 0 ≤ q(u) ≤ 1 and
∑

u∈I q(u) = 1. q(u) is the probability of string
uu . . . u . . .. This example is in a sense opposite to Bernoulli.

An (initial) piece of sequence (54)

u(n) = u1 u2 . . . un (61)

is called a (source) sample n-string, or n-word (with digits from I ), and is treated
as a “message.” Correspondingly, one considers a random n-string

U(n) = (U1,U2, . . . ,Un) . (62)

An encoder (or coder) uses an alphabet J (= Ja) = {0, 1, . . . , a − 1}; typically
a < m (or even a " m); in many cases a = 2 (a binary coder).

A code (also coding, or encoding) is a map, f , that takes a string u(n) into a string
x(N ) = f

(
u(n)

)
where x(N ) = (x1, . . . , xN ) and digits x j ∈ J :

f : u(n) ∈ I n �→ x(N ) = f
(

u(n)
)
∈ J N . (63)

String f
(
u(n)

) ∈ J N is called a codeword for message u(n) under code f .
In this definition, a lot of things have been left unspecified, viz.

1. Is the length N of x(N ) fixed for a given n or does it vary with u(n) (fixed length
versus variable length encoding)? In the latter case, (63) should be modified to

f : u(n) ∈ I n �→ x(N ) = f
(

u(n)
)
∈ J ∗ = �N≥1 J N , (64)

where �N≥1 J N is a disjoint union of Cartesian products J N .
2. How does f act? Digit-wise (where f

(
u(n)

)
is a concatenation (denoted by

the symbol ∨)
(

f (1)(u1) ∨ · · · ∨ f (1)(un)
)

of shorter components f (1)(u j ) pro-
duced from a single-letter encoding map f (1) : u ∈ I �→ f (1)(u) ∈ J ∗) or
block-wise, where the same idea is applied to “blocks” (parts of u(n)) rather than
to single letters?

3. Do we need f to be one-to-one? Or can we use a “random” map where push-
forward images can have several (and possibly many) pull-back inverse images?

All these questions are important but should not be over-stated: It was Shannon’s
genial insight into both the theory and the practice of the problem that enabled him
to carry through. The way out is to ask what do we want? We may go back to the
above answers (1)–(3) and then think of examples.
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For instance, consider 100 outputs of a very biased coin with probability 0.01 of
providing heads (which was not a big deal even in Shannon’s time). Here, instead
of listing the whole string “T T T T T T T T . . . T H T . . .,” we could summarize the
output by saying “096881,” to represent the fact that the heads occurred in three
places 9, 68, and 81. (The initial position is encoded as 00 and the final position
as 99.) Or even more boldly, we may refuse to list the positions of all heads and
give only two first positions where H occurred. What do we gain? The original task
was of being able to list all possible 2100 outcomes (which is impossible even for a
modern computer; cf. the Avogadro number 6.022 × 1023). The “reduced” task is
to list

(
100 + 1002

)
/2 = 5, 050 outcomes: again not a big deal. What do we lose?

In the case where there are three or more heads generated, we will be wrong about
the whole sequence. What is the probability of this unpleasant event? By what is
called the Chebyshev inequality, it does not exceed 1/200. (In fact, it is considerably
smaller.) Are we prepared to take such a risk? This is the essence of data compres-
sion and suggests an obvious question: given a series of n independent outputs from
a random variable, by what factor do we expect to be able to compress the output?

Now it remains to put this into mathematical language, which is done in the next
section.

According to an opinion that gains popularity, Shannon gave a brilliant example
where knowing too much of math may be not productive. He created his theory
at a time where another giant, N. Wiener, actively propagandized his own views
on how the academic, technological, and industrial development of present and
future should be managed, through what he called cybernetics. An important part of
cybernetics is information exchange. Wiener was instinctively a continuous-world
thinker, whereas Shannon was distinctly a discrete-world man, and that determined
the difference between their approaches. Wiener advocated mainly an analog infor-
mation processing and control (although at an early stage he wrote a memorandum
explaining why digital approach is preferable), whereas Shannon on the whole was
firmly on the digital side. Analog principles and devices were a big splash through-
out the 1940s to early 1970s but were clearly losing ground to their digital coun-
terparts at the later period (which continues now). As F. Dyson puts it: “Electronic
engineers learned information theory, the gospel according to Shannon, as part of
their basic training, and cybernetics was forgotten.”

2.2 Shannon’s First Coding Theorem

To be able to compress data efficiently, we would like to find (relatively) small sets
that occur with high probability.

Definition 5 For a given R > 0, a source generating a random string U(n) =
(U1, . . . ,Un) with digits from an alphabet I is said to be reliably encodable at
rate R if, for any n you can find a set An ∈ I n such that

#(An) ≤ 2n R and lim
n→∞P(U(n) ∈ An) = 1 , (65)
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where #(X) denotes the cardinality of the set X .

The idea here is that we can label the members of the set An with a label of length
n R, and so since we are “nearly always” in An , the average length of a compressed
string will be close to n R.

Definition 6 The information rate H of a given source is the smallest reliable encod-
ing rate

H = inf [R : R is reliable] . (66)

Theorem 10 For a source with alphabet of size m,

0 ≤ H ≤ log m , (67)

both bounds being attainable.

Proof The left-hand inequality in (67) trivially follows from Definition 6. On the
other hand, for any An , the size #(An) ≤ #(I n) = mn = 2n log m , hence the right-
hand side of the inequality. The left-hand equality is attained for a source where
always x1 = x2 = x3 · · · . Then An contains at most m strings, which is eventually
less than 2n R for any R > 0.

The right-hand equality is attained for a source with uniformly, independent and
identically distributed xi : in this case for any set of strings P(An) = (1/mn)#(An),
which goes to zero when #(An) ≤ 2n R and R < log m.

Although the quantity H seems useful, it also seems hard to write down. We will
prove results about it by first introducing a quantity Dn which tells us about H , and
then a quantity ξn which tells us about Dn . Then, ξn is easier to find, and from it we
deduce the value of H .

Definition 7 Define the subset maximum by

Dn(R) := max
A:#(A)≤2n R

P(U(n) ∈ A) . (68)

Lemma 2 For any ε > 0, the information rate H satisfies

lim
n→∞ Dn(H + ε) = 1, and, if H > 0, Dn(H − ε) �→ 1 . (69)

Proof By definition, H + ε is a reliable encoding rate. There must therefore exist a
sequence of sets An ⊂ I n , with #(An) ≤ 2n R and P(U(n) ∈ An)→ 1, as n →∞.
Since Dn(R) ≥ P(U(n) ∈ An), Dn(R)→ 1.

Alternatively, for any H > 0, we can pick ε such that H − ε > 0, but not
reliable. Then choosing Cn to be the sets for which the maximum in (68) is attained,
the #(Cn) ≤ 2n R , but P(Cn) �→ 1.

Given a string u(n) = u1 . . . un , consider its log-likelihood per source letter:

ξn(u(n)) = −1

n
log+ pn(u(n)) , (70)
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where pn(u(n)) is the probability assigned to string u(n):

pn(u(n)) = P
(

U(n) = u(n)
)
. (71)

Here, and below, log+ x = log x , if x > 0, and = 0, if x = 0. For a random string
u(n),

ξn(u(n)) = −1

n
log+ pn(u(n)) (72)

is a random variable.

Lemma 3 For any R and any ε > 0,

P(ξn ≤ R) ≤ Dn(R) ≤ P(ξn ≤ R + ε)+ 2−nε. (73)

Proof For simplicity, we leave out the superscript (n). Define

Bn = {u ∈ I n : pn(u) ≥ 2−n R} = {u ∈ I n : − log pn(u) ≤ n R}
= {u ∈ I n : ξn(u) ≤ R} . (74)

Then

1 ≥ P(U ∈ Bn) =
∑

u∈Bn

pn(u) ≥ 2−n R (#(Bn)) , (75)

and so #(Bn) ≤ 2n R . Thus,

Dn(R) = max
#(A)≤2n R

P(U ∈ A) ≥ P(U ∈ Bn) = P(ξn ≤ R), (76)

which proves the left-hand side in (73).
On the other hand, there exists Cn ⊆ I n where the maximum in (68) is attained.

For such a Cn ,

Dn(R) = P(U ∈ Cn) = P(U ∈ Cn, ξn ≤ R + ε)+ P(U ∈ Cn, ξn > R + ε)
≤ P(ξn ≤ R + ε)+

∑

u∈Cn

1
(

pn(u) < 2−n(R+ε)) pn(u)

≤ P(ξn ≤ R + ε)+ 2−n(R+ε)#(Cn)

≤ P(ξn ≤ R + ε)+ 2−n(R+ε)2n R = P(ξn ≤ R + ε)+ 2−nε ,

(77)

as required.

Definition 8 We say that a sequence of random variables {ηn} converge in probabil-
ity to a constant r if for any ε > 0,

lim
n→∞P

(∣∣ηn − r
∣∣ ≥ ε) = 0. (78)
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Convergence in probability is denoted by ηn
P−→ r .

Convergence in probability is established in the law of large numbers (see Theo-
rem 13).

Theorem 11 (Shannon’s first coding theorem) If ξn converges in probability to a
constant γ then γ = H, the information rate of a source.

Proof Let ξn
P−→ γ . Since ξn ≥ 0, its limit γ ≥ 0. By Lemma 3, ∀ε > 0,

Dn(γ + ε) ≥ P(ξn ≤ γ + ε) ≥ P(γ − ε ≤ ξn ≤ γ + ε)
= P (|ξn − γ | ≤ ε) = 1− P (|ξn − γ | > ε) , (79)

which converges to 1 as n →∞. We deduce that H ≤ γ .
In particular, if γ = 0 then H = 0. If γ > 0, by the opposite bound in Lemma 3,

Dn(γ − ε) ≤ P(ξn ≤ γ − ε/2)+ 2−nε/2

≤ P (|ξn − γ | ≥ ε/2)+ 2−nε/2,
(80)

which tends to 2−nε/2. By Lemma 2, H ≥ γ , and the result follows.

Remark 1 Convergence ξn
P−→ γ = H is equivalent to the following asymptotic

equipartition property (AEP): ∀ε > 0,

lim
n→∞P

(
2−n(H+ε) ≤ pn(u(n)) ≤ 2−n(H−ε)) = 1. (81)

In fact,

P
(

2−n(H+ε) ≤ pn(u(n)) ≤ 2−n(H−ε))

= P
(

H − ε ≤ −1

n
log pn(u(n)) ≤ H + ε

)

= P (|ξn − H | ≤ ε)
= 1− P (|ξn − H | > ε) .

(82)

In other words, for any ε > 0 there exists n0(ε) such that, for any n > n0(ε), we
can identify a typical set Tn with the properties that

1. P
(
u(n) /∈ Tn

)
< ε

2. for any u(n) ∈ Tn , the 2−n(H+ε) ≤ P
(
U(n) = u(n)

) ≤ 2−n(H−ε)

For a source with the AEP, encode the typical strings with codewords of length
n(H + ε), and the rest however you like. You will then have an effective encoding
rate H + o(1) bits/source letter.
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Theorem 12 For a Bernoulli source, the information rate equals the entropy of a
single letter, that is

H = h(U j ) = −
∑

u∈I

p(u) log p(u). (83)

Proof For an IID sequence U1, U2, . . .,

pn(u(n)) =
n∏

i=1

p(ui ), hence, − log pn(u) =
∑

i

− log p(ui ). (84)

For a random string u(n) = (U1, . . . ,Un),

ξn = − log pn(u(n)) = −
n∑

i=1

log p(Ui ) =
n∑

i=1

σi , (85)

where random variables σi = − log p(Ui ) are IID (we refer to this as IID random
variables (RVs)). Observe that Eσi = −∑

j p( j) log p( j) = h and so Eξn =
1
n

∑n
i=1 Eσi = h. The following theorem yields convergence in probability ξn

P−→
h as an immediate corollary.

Theorem 13 (Weak law of large numbers for IID RVs) Consider any sequence of
IID RVs X1, X2, . . .with finite mean EXi = μ and finite variance E(Xi−μ)2 = σ 2.
Then for any ε > 0,

lim
n→∞P

(∣∣∣∣∣
1

n

n∑

i=1

Xi − μ
∣∣∣∣∣ ≥ ε

)
= 0. (86)

Proof By Chebyshev, for any random variable η and any ε > 0,

P(η ≥ ε) ≤ 1

ε2
Eη2. (87)

Applying this to the left-hand side of (86) gives

P

⎛

⎝

∣∣∣∣∣∣
1

n

n∑

i=1

Xi − μ
∣∣∣∣∣∣
≥ ε

⎞

⎠ ≤ 1

ε2
E

⎛

⎝ 1

n

n∑

i=1

Xi − μ
⎞

⎠
2

= 1

ε2n2
E

⎛

⎝
n∑

i=1

(Xi − μ)
⎞

⎠
2

. (88)

Since the sum
∑n

i=1(Xi−μ) has mean zero, the right-hand side of (88) is nothing
but the variance:

1

ε2n2
Var

(
n∑

i=1

(Xi − μ)
)
= 1

ε2n2

n∑

i=1

Var(Xi − μ) = 1

nε2
Var X1, (89)
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which goes to 0 when n →∞. Theorem 13 is proved, and so is Theorem 12.
Note that we refer to this as the weak law of large numbers (WLLNs), because

of the (relatively) weak sense in which convergence is proved. Stronger laws are
possible: for example, if E|Xi | <∞, then for IID RVs X1, X2, . . .

∑n
i=1 Xi

n
→ (EXi ) almost surely. (90)

(“Almost surely” means “with probability 1”). However, for our purposes, the weak
law will be enough.

We finish this section with the following theorem which is given without a proof:

Theorem 14 For a Markov source which is an irreducible aperiodic MC, the infor-
mation rate equals the conditional entropy in equilibrium, that is

H = heq(U j+1|U j ) = −
∑

u,v∈I

πeq(u)P(u, v) log P(u, v)

= −
∑

u,v∈I

πeq(u)P(v|u) log P(v|u).
(91)

Here πeq(x) are the (uniquely determined) invariant (stationary) probabilities form-
ing an invariant vector π = (π(u), u ∈ I ): π P = π .

3 Channel Coding

3.1 Introduction to Channels

In this section, we discuss problems of information transmission. That is, we con-
sider whether we can reliably send information through a noisy communication
channel. For example, consider two characters, Alice and Bob, A talking to B on
their mobile phones.

1. A source (A’s voice) generates a signal converted by the microphone into a series
of 0s and 1s. This is an initial stage of encoding (or compressing) information,
which is highly accurate. We consider this binary sequence as a message u(n).
The source alphabet I = {0, 1} and n is about 10,000–30,000.

2. We (a transmitter) use an encoder (a function f , random or deterministic, intro-
duced in formulae (63) and (64)) to convert these 0s and 1s into another series of
0s and 1s. The key will be to make a clever choice of function, to somehow “pad
out” the information in the signal and protect it from errors.

3. Next, the output of the function is sent to B’s mobile phone, and errors are intro-
duced in transmission. For instance, the mobile phone signal will be sent via
masts and base stations to another mobile phone. Errors can be introduced by a
variety of processes, but from our point of view, that will not matter – we will
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not differentiate between errors introduced by cosmic rays, software errors at the
base station, pigeons flying into the mast, and so on). This is what we refer to as
the communication channel.

4. B’s phone now attempts to decode the signal. The decoder will, roughly speak-
ing, attempt to apply the inverse of the encoding function f , to recover something
close to the original message. However, we will need a decoding function that is
robust to the introduction of these errors.

Many other processes can be regarded in the same way, and the model of a chan-
nel is in fact very abstract.

When we use a channel we hope to

• correct as many errors as possible (deal with as noisy a channel as possible),
• make effective use of the channel available (maximum transfer of information

per unit time), and
• quickly encode and decode information (a mobile phone conversation must take

place in real time).

As was agreed, the source emits a random text U1,U2, . . ., where Ui ∈ I , and we
encode a message u(n) by a codeword x (N ), by using a code f (= fn) : I n → J N

(often J = {0, 1}). We stress that the code is known to both the transmitter and the
receiver. The key is to understand the relationship between n and N .

A channel is understood as any physical process subject to “noise” which distorts
the messages transmitted: a message at the output differs in general from the mes-
sage at the input. Formally, a channel is characterized by a conditional distribution

Pchannel

(
receive word y(N )

∣∣∣codeword x(N ) sent
)
, (92)

which we again suppose is known to both sender and receiver. These conditional
probabilities define a channel. We will often deal with the simplest case.

Definition 9 We say that a channel is memoryless if

Pchannel

(
y(N )

∣∣x(N )
)
=

N∏

i=1

Pchannel(yi |xi ), (93)

where y(N ) = y1 . . . yN , x(N ) = x1 . . . xN (the brackets and the commas in the nota-
tion (x1, . . . , xN ) and (y1, . . . , yN ) will henceforth be omitted. Here, Pchannel(y|x)
are symbol-to-symbol channel probabilities (Pchannel(y|x) is the conditional proba-
bility to have symbol y at the output of the channel given that symbol x has been
sent). We think of Pchannel as a matrix, often called the channel matrix.

If the rows of the channel matrix P are permutations of each other, we say that
the channel is symmetric.

In particular, we often consider the memoryless binary symmetric channel, where
x, y ∈ {0, 1}, so that {Pchannel(y|x)} is a 2×2 transition probability matrix of the
form
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Pchannel =
(

1− p p
p 1− p

)
(94)

and p is called the row error probability (or the symbol error probability).

3.2 Transmission Rates and Capacity

We want to introduce a decoding rule f̂N : J N → I n so that the overall probability
of error

ε =
∑

u(n)

P
(

f̂ (y(N )) �= u(n),u(n) emitted by the source
)

=
∑

u(n)

Psource

(
U(n) = u(n)

)
Pchannel

(
f̂N (y(N )) �= u(n)

∣∣ fn(u(n)) sent
) (95)

is small. In fact, we will try to have quantity (95) tending to zero as n →∞.
The construction is based on two facts:

1. For a source with the AEP the number of distinct n-strings emitted is 2n(H+o(1))

where H ≤ log m is the information rate of the source. That is, we do not need
to encode mn = 2n log m messages, but rather only 2n(H+o(1)) which may be
considerably less. That implies a codeword length of $nH%.

2. We increase the length of the codewords used from $nH% to $R
−1

nH%, for some
constant R. That is, we introduce redundancy in code fn , hoping to reduce the

overall error probability (95). We want to have the factor of increase R
−1

as
small as possible, that is, R as large as possible.

As the codeword length is a crucial parameter, write N instead of R
−1

Hn and
RN instead of Hn. It is convenient to consider a “typical” set UN of distinct strings

emitted by the source, with #
(
UN

)
= 2N (R+o(1)).

Definition 10 Value R ∈ (0, 1) is a reliable transmission rate (for a given chan-
nel) if, given that the source strings take equiprobable values from a set UN of size
2N (R+o(1)), there exists an encoding rule fN : UN → XN ⊆ {0, 1}N and a decoding
rule f̂N : {0, 1}N → UN with error probability

∑

u(n)∈UN

1

#
(
UN

)Pchannel

(
f̂N (y(N )) �= u(n)

∣∣∣ fN (u(n)) sent
)

(96)

tending to zero as N →∞.

Equivalently, that is, we look for
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R ∼
log #

(
UN

)

N
. (97)

Definition 11 The channel capacity is defined as the supremum

C = sup [R : is a reliable transmission rate ] . (98)

The reason for considering the equiprobable distribution on UN in Definition 10
is that it is the worst case. The argument uses the idea of randomizing, which proves
to be very powerful in channel calculations.

In what follows, whenever appropriate, we will omit the subscript N and the
superscript (N ).

Theorem 15 Fix a channel, by choosing Pchannel in (92). Fix a set U of source strings
and denote by ε(P) the overall error probability (96) for the source with probability
distribution P on U , minimized over all encoding and decoding rules. Then

ε(P) ≤ ε(Peq) , (99)

where Peq is equidistribution over U .

Proof Consider particular encoding and decoding rules, f and f̂ , and let a string
u ∈ U have probability P(u). Define the error probability when u is emitted to be

β(u) =
∑

y: f̂ (y) �=u

Pchannel(y| f (u)) . (100)

The overall error probability therefore equals ε(P, f, f̂ ) = ∑
u∈U P(u)β(u).

Now, consider a permutation π of the codewords (that is, instead encode
u by f (v) where v = π(u)). The new overall error probability ε(π) =∑

u∈U P(u)β(π(u)). In the case of P = Peq (equidistribution) ε(π) does not depend
on π and equals ε = 1

#

(
U

) ∑
u∈U β(u) = ε(Peq, f, f̂ ).

For each probability distribution P there exists π such that ε(π) ≤ ε. In fact, take
a random permutation, Π , equidistributed among all permutations of codewords.
Then

min
π
ε(π) ≤ Eε(Π) = E

∑

u∈U
P(u)β(�u)

=
∑

u∈U
P(u)Eβ(Πu) =

∑

u∈U
P(u)

1

#
(
U

)
∑

v∈U
β(v) = ε .

(101)

Hence, given any f and f̂ , you can find new encoding and decoding rules with
overall error probability ≤ ε(Peq, f, f̂ ). Minimizing over f and f̂ leads to (99).
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3.3 Simple Decoding Rules

It is now time to discuss possible decoding rules. As was noted before, a decoding
rule (or a decoder) is a map f̂N : {0, 1}N → U .

Physically speaking, a decoding rule is given by fixing, for each codeword xi ∈
{0, 1}N , a set A(xi ) ⊂ {0, 1}N , so that A(xi ) and A(x j ) are disjoint for distinct
codewords xi and x j , and the union

⋃
i A(xi ) gives the whole {0, 1}N . Given that

y ∈ A(x), we decode by f̂N (y) = x. See Fig. 2 for a schematic illustration of this.
Although in the definition of the channel capacity we assume that the source

messages are equidistributed (which gives the worst case) of course the source does
not always follow this assumption. We may need to distinguish between two situa-
tions:

1. The receiver knows the probability distribution Psource and hence the probabili-
ties pN (x), x ∈ {0, 1}N , of the codewords.

2. The receiver does not know pN (x).

Definition 12 Two natural decoding rules are as follows

1. The ideal observer rule: Decode a received word y(N ) by a codeword x� that
maximizes the posterior probability

P
(

x sent
∣∣∣y received

)
= pN (x)Pchannel(y

∣∣x)
py(y)

, (102)

where

py(y) =
∑

u∈UN

Psource(u)Pchannel(y
∣∣ fN (u)). (103)

a b

d e

c

f

Fig. 2 Decoding rule described in terms of sets around each codeword
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2. The maximum likelihood rule: Decode a received word y by codeword x� that
maximizes the prior probability

Pchannel(y
∣∣x). (104)

Theorem 16 Suppose that an encoding rule f is defined for all messages that occur
with positive probability and is one-to-one:

1. For any encoding rule, the ideal observer decoder minimizes the overall error
probability among all decoders.

2. If the source message U is equiprobable on a set U and encoding rule f is U →
X then codeword X = f (U) is equiprobable on X , and the ideal observer and
maximum likelihood decoders coincide.

Proof

1. Note that, given a received word y, the denominator in (100) is fixed, so the ideal
observer rule maximizes the joint probability p(x)Pchannel(y|x). Suppose you use
an encoding rule f and decoding rule f̂ . Then the overall error probability (see
(95)) is

∑

u

Psource(U = u)Pchannel
(

f̂ (y) �= u
∣∣ f (u) sent

)

=
∑

x

p(x)
∑

y: f̂ (y) �=x

Pchannel (y|x)

=
∑

y

∑

x:x �= f̂ (y)

p(x)Pchannel (y|x)

=
∑

y

∑

x

p(x)Pchannel (y|x)−
∑

y

p
(

f̂ (y)
)

Pchannel

(
y
∣∣∣ f̂ (y)

)

= 1−
∑

y

p
(

f̂ (y)
)

Pchannel

(
y
∣∣∣ f̂ (y)

)
.

(105)

Now each term in the sum
∑

y
p

(
f̂ (y)

)
Pchannel

(
y
∣∣∣ f̂ (y)

)
is maximized when

f̂ coincides with the ideal observer rule. Hence, the whole sum is maximized,
and the overall error probability minimized.

2. The probabilities being constant means that they can be canceled, and the result
is clear.

As we assume, in the definition of the channel capacity, that the source messages are
equidistributed, it is natural to use the maximum likelihood decoder. We are going
to do so throughout the rest of this chapter.
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3.4 Shannon’s Second Coding Theorem

In this section, we discuss Shannon’s second coding theorem (in the case of a mem-
oryless channel). It turns out that a key quantity in the theorem is the mutual entropy
ι(X : Y ) defined in (20). The result is as follows:

Theorem 17 (Shannon’s second coding theorem) For a memoryless channel, the
capacity equals the maximum of the mutual entropy between a single input and a
single output symbol. That is

C = sup
pX

ι(X : Y )

= sup
pX

∑

x,y

pX (x)Pchannel(y|x) log
pX (x)Pchannel(y|x)

pX (x)pY (y)
.

(106)

Here pX stands for the distribution of input symbol X and pY for the distribution of
input symbol Y :

pY (y) =
∑

x̃

pX (̃x)Pchannel(y |̃x). (107)

Idea of the proof The proof will be divided into two parts, presented separately as
Theorems 18 and 19 that establish, respectively, an upper and a lower bound for C .
Traditionally, Theorem 18 is called the inverse part and Theorem 19 the direct part
of Shannon’s second coding theorem.

Before we immerse in the formal proof, consider the following example of a
“noisy typewriter.”

Example 6 Pick integers k and l. Consider a channel which has the input and output
symbols {0, 1, 2, . . . , kl−1}. The channel takes symbol i to i, i+1, . . . , i+ (k−1)
with equal probability. Then, for every input distribution pX

ι(X : Y ) = h(Y )− h(Y |X)
= h(Y )−

∑

x

pX (x)h(pY ( · |X = x)) = h(Y )− log k. (108)

The largest that h(Y ) could be is log(kl) – one way that we can achieve this is to
take X equidistributed on all the possible inputs. Then Y is equidistributed on all
the possible outputs. This means that suppX

ι(X : Y ) = log l. Now, we can achieve
error probability of zero, with this amount of redundancy introduced. That is, if we
only use input symbols {0, k, 2k, . . . , (l − 1)k}, then the outputs of the channel will
be distinct for distinct symbols. That is, we can send (and guarantee to decode) l

messages with each symbol. Hence, in (97), this corresponds to #
(
U1

)
= l (and

indeed #
(
UN

)
= l N ), so that
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R =
log #

(
UN

)

N
= log l (109)

is a reliable transmission rate.

This argument does not really prove anything yet, but we can motivate our proof
by saying that the property of joint typicality introduced in Definition 14 equates to
saying that the source and channel are roughly like the noisy typewriter.

Theorem 18 (The inverse part of Shannon’s second coding theorem) For a memo-
ryless channel, the channel capacity C obeys

C ≤ sup
pX

ι(X : Y ) . (110)

Proof Suppose we have a source which produces equidistributed symbols on a set
UN , of size 2N RN . We must show that for a sequence of codes with error probability
εN converging to zero, then

R = lim
N→∞ RN ≤ sup

pX

ι(X : Y ). (111)

Now, suppose that the encoding rule f is 1–1 (if not, the bounds will be even
tighter, since the error probability will be higher). Then

N RN = log(#
(
UN

)
) = h

(
X(N )

)

= h
(

X(N )|Y(N )
)
+ i

(
X(N ) : Y(N )

)

≤ (1+ (N RN )εN )+ N ι(X : Y ),

(112)

where the inequality follows by (43) and (53).
Hence, dividing through by N , since RN → R and εN → 0, we can deduce the

result.
Prior to proceeding further with formal proofs, consider how Theorem 17 is used

to calculate the capacity of a symmetric memoryless channel. A useful formula is
ι(X : Y ) = h(Y ) − h(Y |X). Then, in the case of a symmetric channel, the entropy
h

(
pY |X ( · |x)

)
of the conditional distribution pY |X ( · |x) does not depend on x , and so

h(Y |X) just equals the entropy of one row. Hence, we only need to maximize h(Y )
over input distributions X – sometimes we will have a free choice of achievable Y ,
sometimes it will be constrained, and we have to use other tricks.

Example 7 For a memoryless binary symmetric channel, for each x ,

h
(
pY |X ( · |x)

) = −
∑

y=0,1

Pchannel(y|x) log Pchannel(y|x)

= −p log p − (1− p) log(1− p) = h(p, 1− p) .

(113)
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Hence h(Y |X) = h(p, 1 − p) does not depend on input distribution pX . Thus, in
this case

C = sup
pX

h(Y )− h(p, 1− p) . (114)

But suppX
h(Y ) is equal to log 2 = 1: it is attained at pX (0) = pX (1) = 1/2,

because then

pY (0) = pY (1) = 1/2(p + (1− p)) = 1/2. (115)

Therefore, in this example,

C = 1− h(p, 1− p) . (116)

Next, consider the idea of jointly typical sequences, an idea which extends the
definition of typical sequences and AEP of Remark 1.

Definition 13 Given a probability distribution p(x, y), we say that the sequences
(x(N ), y(N )) are jointly typical if the following three properties hold:

∣∣∣∣−
1

N
log p

(
x(N )

)
− h(X)

∣∣∣∣ < ε,
∣∣∣∣−

1

N
log p

(
y(N )

)
− h(Y )

∣∣∣∣ < ε,
∣∣∣∣−

1

N
log p

(
x(N ), y(N )

)
− h(X,Y )

∣∣∣∣ < ε,

(117)

where p
(
x(N )

) = ∏N
i=1 p(xi ) and so on.

We can establish a joint version of the AEP:

Theorem 19 Writing A(N )ε for the set of jointly typical sequences

1. The probability of the set P
(

A(N )ε

)
converges to 1 as N →∞.

2. The size #
(

A(N )ε

)
≤ 2N (h(X,Y )+ε).

3. Given random variables X̃(N ), Ỹ(N ) independent and with the same marginals
as x(N ) and y(N ) then

P
(
(X̃(N ), Ỹ(N )) ∈ A(N )ε

)
≤ 2−N (ι(X :Y )−3ε).

Proof As before, the law of large numbers will give that there exists a number N ′
such that for N ≥ N ′,
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P
(∣∣∣∣−

1

N
log p

(
x(N )

)
− h(X)

∣∣∣∣ > ε
)
< ε/3,

P
(∣∣∣∣−

1

N
log p

(
y(N )

)
− h(Y )

∣∣∣∣ > ε
)
< ε/3,

P
(∣∣∣∣−

1

N
log p

(
x(N ), y(N )

)
− h(X,Y )

∣∣∣∣ > ε
)
< ε/3,

(118)

so that the probability of the union of these three sets is less than ε. Thus, the first
part of Theorem 19 holds.

To show the second part of Theorem 19, note that

1 ≥
∑

A(N )ε

p
(

x(N ), y(N )
)
≥

(
#
(

A(N )ε

))
2−N (h(X,Y )+ε).

The third part follows by considering

P
((

X̃(N ), Ỹ(N )
) ∈ A(N )ε

)

=
∑

x(N ),y(N )∈A(N )ε

P
((

X̃(N ), Ỹ(N )
) = (

x(N ), y(N )
))

=
∑

x(N ),y(N )∈A(N )ε

P
((

X̃(N ) = x(N )
)
P

(
Ỹ(N )

) = y(N )
)

≤
∑

x(N ),y(N )∈A(N )ε

2−N (h(X)− ε) 2−N (h(Y )− ε)

≤ 2N (h(X,Y )+ ε) 2−N (h(X)− ε) 2−N (h(Y )− ε)
= 2−N (ι(X : Y )− 3ε).

(119)

Now, notice that there are about 2Nh(X) typical X sequences, about 2Nh(Y ) typical
Y sequences, but only around 2Nh(X,Y ) jointly typical sequences. This means that
if we pick a random typical X sequence, and a random typical Y sequence, the
probability that sequence (X,Y ) is jointly typical is about 2−N ι(X :Y ).
Theorem 20 (The direct part of Shannon’s second coding theorem) For a memory-
less channel, the capacity

C ≥ sup
pX

ι(X : Y ). (120)

Proof To prove Theorem 20, we take any probability distribution p(x) of an input
symbol and generate a code randomly, according to it. That is, we make a list of
2N R codewords, where each symbol of each codeword is chosen independently,
according to the same distribution p(x).
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Now, we can send 2N R messages, so choose uniformly from the set of 2N R pos-
sible codewords one codeword x(N ) = (x1, . . . , xN ). The receiver will receive a
sequence y(N ), distributed according to the channel probability matrix. Now, we
introduce yet another decoding rule, typical set decoding.

Definition 14 On receiving word y(N ), look for a word x(N ) such that (x(N ), y(N ))
forms a jointly typical sequence. If there is a unique such word, return it as the best
guess of the transmitted codeword. If there is more than one, or none at all, return
an error.

We will show that typical set decoding is asymptotically optimal. We do this by
taking a probability distribution p and considering the average performance of the
random codes generated as above, averaged across all possible codewords. This sig-
nificantly simplifies the analysis. That is, we calculate the average across all random
codes C: the overall error probability equals

∑

C
P(C)P(error |C)

=
∑

C
P(C used)

1

2N R

∑

w

P(error | C used, word w sent)

= 1

2N R

∑

w

∑

C
P(C used)P(error | C used, word w sent) .

(121)

Now notice that since we average across all random codes, it does not matter which
codeword was actually sent, so without loss of generality, we can assume w = 1.

Note that two types of errors are possible: first if x(N ) and y(N ) are not jointly
typical and second if there exists some other codeword which is jointly typical with
y(N ). Now, the trick will be to use the joint AEP, which shows that the first type of
error has probability tending to zero and that the probability that a given codeword
and received word are jointly typical is about 2−Ni , so we can afford to use about
2Ni codewords. That is, if we write

Ei = {codeword i is jointly typical with received y(N )} , (122)

then the probability of an error is

P(Ec
1 ∪ E2 ∪ E3 ∪ · · · ∪ E2N R ) ≤ P(Ec

1)+
2N R∑

i=2

P(Ei ) . (123)

Now, by the first part of Theorem 19, for N sufficiently large, the first event has
probability less than ε. Similarly, the third part of Theorem 19 shows that for i �= 1,
P(Ei ) ≤ 2−N (ι(X : Y )− 3ε), so that the error probability is less than

ε + exp2(N (R − ι(X : Y )+ 3ε)) , (124)
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so that if R < ι(X : Y )− 3ε, this quantity goes to zero.
Now, notice that we have a free choice of probability distributions p, so we can

choose the one which makes ι(X : Y ) as large as possible. Further, since the average
code has error probability tending to zero, we can guarantee that we will be able to
choose some code which has its error probability tending to zero.

4 Bibliographical Notes

For the bulk material of these lecture notes refer to [1–3] and for basics of probabil-
ity [4–6].
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Quantum Probability and Quantum
Information Theory

H. Maassen

1 Introduction

From its very birth in the 1920s, quantum theory has been characterized by a certain
strangeness: It seems to run counter to the intuitions that we humans have about the
world we live in.

According to these “realistic” intuitions all things have their definite place and
sharply determined qualities, such as speed, color, and weight. Quantum theory,
however, refuses to precisely pinpoint them. With respect to this apparent short-
coming of the theory different points of view can be taken. It could be suspected
that quantum theory is incomplete, in that it gives a coarse description of a reality
that is actually more refined. This is the viewpoint once taken by Einstein, and it still
has adherents today. It calls for a search for finer mathematical models of physical
reality, based on classical probability, often referred to as “hidden variable models”
(see chapter “Photonic Realization of Quantum Information Protocols”). One such
attempt is Bohm’s theory of non-relativistic quantum mechanics.

However, the work of John Bell in the 1960s and of Alain Aspect in the 1970s
and 1980s strongly favors the opposite point of view: Their work has made clear that
such models with a classical probabilistic structure are necessarily afflicted with a
certain weakness; they must at least allow action at a distance. This we regard as a
bad property for a theory which aims to describe a physical world where no signals
have been observed to travel faster than light. Apart from that, the hidden variable
theories which have been found so far are highly artificial and cannot be tested
against quantum mechanics since they do not predict any new phenomena.

It is for these reasons that we decide to accept quantum theory with its inherent
strangeness and are prepared to modify probability theory accordingly.
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1.1 Quantum Probability

So quantum mechanics does not predict the results of physical experiments with
certainty, but calculates probabilities for their possible outcomes.

Now, the classical mathematical theory of probability obtained a unified formu-
lation in the 1930s, when Kolmogorov introduced his axioms, defining the universal
structure (Ω,Σ,P) of a probability space. For a long time this theory of probability
(dealing with probability distributions, stochastic processes, Markov chains, mar-
tingales, etc.) remained completely separate from the mathematical development
of quantum mechanics (involving vectors in a Hilbert space, Hermitian operators,
unitary transformations, and such like).

In the 1970s and 1980s people around Accardi, Lewis, Davies, Kümmerer, build-
ing on ideas of von Neumann’s and Segal’s, developed a unified framework, a gener-
alized, “non-commutative,” probability theory, in which classical probability theory
and quantum mechanics can be discussed in unison. It consists of ordinary Hilbert
space quantum theory, with the emphasis moved toward operators on Hilbert space,
and the algebras which they generate. The main objective of this chapter is to sketch
the outlines of this framework and show its usefulness for information theory.

1.2 Quantum Information

In Shannon’s (classical) information theory (see chapter “Classical Information
Theory”), a single unit, the bit, serves to quantify all forms of information, be it in
print, computer memory, CD-ROM, or strings of DNA. Such a single unit suffices,
because different forms of information can be converted into each other by copying,
according to fixed “exchange rates.” The physical states of quantum systems, how-
ever, cannot be copied into such “classical” information, but can be converted into
each other. This leads to a new unit of information: the qubit.

Quantum information theory studies the handling of this new form of informa-
tion by information-carrying channels. We shall treat the basic properties of these
channels and some impossibilities as well as new possibilities connected with quan-
tum information. The impossibility of copying makes quantum information an ideal
means to establish secrecy (see chapter “Quantum Cryptography”).

1.3 Quantum Computing

It was Richard Feynman who first thought of employing the strangeness of quantum
mechanics to do things that would be impossible in a classical world.

The idea was developed in the 1980s and 1990s by David Deutsch, Peter Shor,
and many others into a flourishing branch of science called “quantum computing”:
How to make quantum mechanical systems perform calculations more efficiently
than ordinary computers can do. This research is still in a predominantly theoretical
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stage: The quantum computers actually built are as yet extremely primitive and can
by no means compete with even the simplest pocket calculator, but expectations are
high (see chapter “Quantum Algorithms”).

1.4 This Chapter

We start with an introduction to quantum probability. In Sect. 2 we demonstrate the
“strangeness” of quantum phenomena by very simple polarization experiments, cul-
minating in Bell’s famous inequality, tested in Aspect’s experiment. Bell’s inequal-
ity is a statement in classical probability that is violated in quantum probability and
in reality.

Taking polarizers as our starting point, in Sects. 3 and 4 we build up the new
probability theory in terms of algebras of operators on a Hilbert space. In Sect. 5
operations on these algebras will be characterized, and some aspects will be dis-
cussed in which they differ from classical physical operations. They are subject to
certain strange limitations: The impossibility of copying, of coding information into
bits, of jointly measuring incompatible observables, of observation without perturb-
ing the object (cf. Sect. 6). But they also open up surprising possibilities: entangling
remote systems, teleportation of this entanglement, sending two bits in a single qubit
(cf. Sect. 7). Further luring perspectives as highly efficient algorithms for sorting,
Fourier transformation, and factoring very large numbers will be treated in chapter
“Quantum Algorithms”.

2 Why Classical Probability Does Not Suffice

(This section is based on [8].)

2.1 An Experiment with Polarizers

To start with, we consider a simple experiment. In a beam of light of a fixed color
we put a pair of polarizing filters, each of which can be rotated around the axis
formed by the beam. As is well known, the light falling through both filters changes
in intensity when the filters are rotated relative to each other. Starting from the
orientation where the resulting intensity is maximal and rotating one of the filters
through an angle α, the light intensity decreases with α, vanishing for α = 1

2π . If
we call the intensity of the beam before the filters I0, after the first I1, and after
the second I2, then I1 = 1

2 I0 (we assume the original beam to be unpolarized), and
(Fig. 1)

I2 = I1 cos2 α . (1)
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Fig. 1 Two polarizers in
conjunction

I1I0 I2
α

So far the phenomenon is described well by classical physics. During the last
century, however, it has been observed that for very low intensities (monochromatic)
light comes in small packages, which were called photons, whose energy depends
on the color, but not on the total intensity. So the intensity must be proportional to
the number of these photons, and formula (1) must be given a statistical meaning:
A photon passing through the first filter has a probability cos2 α to pass through the
second. Formula (1) then holds only on the average, for large numbers of photons.

Thinking along the lines of classical probability, we may associate with a polar-
ization filter in the direction α a random variable Pα , taking the value Pα(ω) = 0 if
the photon ω is absorbed by the filter and Pα(ω) = 1 if it passes through. For two
filters in the directions α and β these random variables then should be correlated as
follows:

E(PαPβ) = P[Pα = 1, Pβ = 1] = 1
2 cos2(α − β). (2)

Here we hit on a difficulty: The function on the right-hand side is not a possible cor-
relation function! This can be seen as follows. Take three polarizing filters, having
polarization directions α1, α2, and α3, respectively. Put them on the optical bench in
pairs. They should give rise to random variables P1, P2, and P3 satisfying

E(Pi Pj ) = 1
2 cos2(αi − α j ) . (3)

Proposition 1 (Bell’s three-variable inequality) [2] For any three 0–1-valued ran-
dom variables P1, P2, and P3 on a probability space (Ω,P) the following inequality
holds:

P[P1 = 1, P3 = 0] ≤ P[P1 = 1, P2 = 0] + P[P2 = 1, P3 = 0]. (4)

Proof

P[P1 = 1, P3 = 0] = P[P1 = 1, P2 = 0, P3 = 0] + P[P1 = 1, P2 = 1, P3 = 0]
≤ P[P1 = 1, P2 = 0] + P[P2 = 1, P3 = 0]. ��

(5)
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In our example, we have

P[Pi = 1, Pj = 0] = P[Pi = 1] − P[Pi = 1, Pj = 1]
= 1

2 − 1
2 cos2(αi − α j ) = 1

2 sin2(αi − α j ).
(6)

Bell’s inequality thus reads

1
2 sin2(α1 − α3) ≤ 1

2 sin2(α1 − α2)+ 1
2 sin2(α2 − α3), (7)

which is clearly violated for the choices α1 = 0, α2 = 1
6 π , and α3 = 1

3 π , where it
says that

3

8
≤ 1

8
+ 1

8
. (8)

This example suggests that classical probability cannot even describe this simple
experiment!

Remark 1 The above calculation could be summarized as follows: we are in
fact looking for a family of 0–1-valued random variables (Pα)0≤α<π with
P[Pα = 1] = 1

2 , satisfying the requirement that

P[Pα �= Pβ ] = sin2(α − β). (9)

Now, on the space of 0–1-valued random variables on a probability space the func-
tion (X,Y ) �→ P[X �= Y ] equals the L1-distance of X and Y :

P[X �= Y ] =
∫

Ω

|X (ω)− Y (ω)|P(dω) = ‖ X − Y ‖1 . (10)

On the other hand, the function (α, β) �→ sin2(α − β) does not satisfy the trian-
gle inequality for a distance function on the interval [0, π). Therefore no family
(Pα)0≤α<π exists which meets requirement (9).

2.2 An Improved Experiment

On closer inspection the above example is not very convincing. Indeed, when two
polarizers are arranged on the optical bench, why should not the random variable for
the second polarizer depend on the angle of the first? The correlation in (2) would
then read

E(PαPα,β) = P[Pα = 1, Pα,β = 1] = 1
2 cos2(α − β), (11)

which can easily be satisfied, and the whole refutation collapses.
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Fig. 2 Photon pair
production

α
β

Ca

So we should do a better experiment. We must let the filters act on the photons
without influence on each other. Maybe we can separate them spatially?

Here a clever technique from quantum optics comes to our aid. It is possible to
build a device that produces pairs of photons, such that the members of each pair
move in opposite directions and show opposite behavior toward parallel polarization
filters: If one passes the filter, then the other is surely absorbed. The device contains
calcium atoms, which are excited by a laser to a state they can only leave under
emission of such a pair (Fig. 2).

With these photon pairs, the very same experiment can be performed, but this
time the polarizers are far apart, each one acting on its own photon. The same cor-
relations are measured, say first between Pα1 on the left and Pα2 on the right, then
between Pα1 on the left and Pα3 on the right, and finally between Pα2 on the left
and Pα3 on the right. The same outcomes are found, violating Bell’s three-variable
inequality, thus strengthening the case against classical probability.

2.3 The Decisive Experiment

Advocates of classical probability could still find serious fault with the argument
given so far. Indeed, do we really have to assume that we are measuring the same
random variable Pα2 on the right as later on the left? Is it really true that the polar-
izations in these pairs are exactly opposite? There could exist a probabilistic expla-
nation of the phenomena without this assumption.

So the argument has to be tightened still further. This brings us to the experiment
which was actually performed by A. Aspect in Orsay (near Paris) in 1982 [1]. In
this experiment a random choice out of two different polarization measurements
was performed on each side of the pair-producing device, say in the direction α1 or
α2 on the left and in the direction β1 or β2 on the right, giving rise to four random
variables P1 := P(α1), P2 := P(α2) and Q1 := Q(β1), Q2 := Q(β2), two of
which are measured and compared at each trial (see chapter “Photonic Realization
of Quantum Information Protocols” for more details).

Proposition 2 (Bell’s four-variable inequality) For any quadruple P1, P2, Q1, and
Q2 of 0–1-valued random variables on (Ω,P) the following inequality holds:

P[P1 = Q1] ≤ P[P1 = Q2] + P[Q2 = P2] + P[P2 = Q1]. (12)
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(In fact, by symmetry, neither of these four probabilities is larger than the sum of
the other three.)
Proof It is easy to see that for all ω

P1(ω) = Q1(ω)⇒ P1(ω) = Q2(ω) or Q2(ω) = P2(ω) or P2(ω) = Q1(ω) .

(13)
�

Bell’s four-variable inequality can be viewed as a “quadrangle inequality” with
respect to the metric (X,Y ) �→ ‖ X − Y ‖1 on random variables X , Y .

On the other hand, quantum mechanics predicts (cf. Sect. 3.6), and the experi-
ment of Aspect showed, that one has,

P[P(α) = Q(β) = 1] = 1
2 sin2(α − β). (14)

Similarly, P[P(α) = Q(β) = 0] = 1
2 sin2(α − β). Hence

P[P(α) = Q(β)] = sin2(α − β). (15)

So Bell’s four-variable inequality reads in this example:

sin2(α1 − β1) ≤ sin2(α1 − β2)+ sin2(α2 − β1)+ sin2(α2 − β2), (16)

which is clearly violated for the choices α1 = 0, α2 = π
3 , β1 = π

2 , and β2 = π
6 , see

Fig. 3, in which case it reads

1 ≤ 1

4
+ 1

4
+ 1

4
. (17)

Now we are finished: There does not exist, on any classical probability space, a
quadruple P1, P2, Q1, and Q2 of random variables with the correlations measured
in this experiment.

Fig. 3 Directions violating
Bell’s inequality

β1

β2

α2

α1
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Discussion

1. A crucial assumption that goes into Bell’s inequality is that it makes sense to
compare (cf. (5)) the (possibly random) reactions which a given photon would
show to different filters, including those it does not actually meet. This assump-
tion is called realism; it is made in all classical probabilistic physical theories,
but is abandoned in quantum mechanics.

2. A second important assumption, necessary for the validity of Bell’s inequal-
ity, was mentioned before: The outcome on the right (described by Q(β) for
some β) should not depend on the angle α of the polarizer on the left. This
assumption is called “locality.” In order to justify this assumption, Aspect has
made considerable efforts. In his (third) experiment [1], the choice of what to
measure on the left (α1 or α2) and on the right (β1 or β2) was made during the
flight of the photons, so that any influence which each of these choices might
have on the outcome on the opposite end would have to travel faster than light.
By the causality principle of relativity theory such influences are excluded.

3. The Orsay experiment refutes all imaginable physical theories which are both
local and realistic (cf. 1 and 2 above). Quantum mechanics is local, but not real-
istic. Its great successes lead us to believe that realism fails for the description of
nature. Some prefer to adhere to realism, and so they must give up locality, and
hence Einstein causality [4, 9].

4. In our opinion, the phrase “quantum non-locality,” which is often heard in the
context of Bell’s inequalities, signals a misconception. It suggests giving up both
realism and locality. This is too much of a defeat and unnecessary. Quantum
mechanics is local. But it describes phenomena which in a classical theory could
only be explained using some action at a distance.

2.4 The Orsay Experiment as a Card Game

To illustrate the above refutation of local realism more vividly, we shall present the
experiment in the form of a card game. Nature can win this game. Can you?

Two players, P and Q, are sitting at a table. They are cooperating to achieve a
single goal. There is an arbiter present to deal cards and to count points. On the table
there is a board consisting of four squares as drawn in Fig. 4. There are dice and an
ordinary deck of playing cards. The deck of cards is shuffled well. (In fact we shall
assume that the deck of cards is an infinite sequence of independent cards, chosen
fully at random.) First the players are given some time to make agreements on the
strategy they are going to follow. Then the game starts, and from this moment on
they are no longer allowed to communicate. The following sequence of actions is
then repeated many times:

1. The dealer hands a card to P and one to Q. Both look at their own card, but not
at the other one’s. (The only feature of the card that matters is its color: red or
black.)
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Fig. 4 Board for the Bell
game
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2. The dice are thrown.
3. P and Q simultaneously say “yes” or “no,” according to their own choice. They

are free to make their answer depending on any information they possess, such
as the color of their own card, the agreements made in advance, the numbers
shown by the dice, the weather, the time.

4. The cards are laid out on the table. The pair of colors of the cards determines
one of the four squares on the board: These are labeled (red, red), (red, black),
(black, red), and (black, black).

5. In the square so determined a 0 or a 1 is written: a 0 when the answers of P and
Q have been different, a 1 if they have been the same.

In the course of time, the squares on the board get filled with 0s and 1s. The
arbiter keeps track of the percentage of 1s in proportion to the total number of bits in
each square; we shall call the time limits of these percentages as the game proceeds:
a11, a12, a21, and a22. The aim of the game, for both P and Q, is to get a11 larger
than the sum of the other three limiting percentages. So P and Q must try to give
identical answers as often as they can when both their cards are red, but different
answers otherwise.

Proposition 3 (Bell’s inequality for the game) P and Q cannot win the game by
classical means, namely

a11 ≤ a12 + a21 + a22 . (18)

Proof The best P and Q can do, in order to win the game, is to agree upon some
(possibly random) strategy for each turn. For instance, they may agree that P will
always say “yes” (i.e., Pred = Pblack =“yes”) and that Q will answer the question
“Is my card red?” (i.e., Qred = “yes” and Qblack =“no”). This will lead to a 1 in
the (red, red) square or the (black, red) square or to a 0 in one of the other two.
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So if the players repeat this strategy indefinitely, on the long run they would get
a11 = a12 = 1 and a21 = a22 = 0, disappointingly satisfying Bell’s inequality.

The above example is an extremal strategy. There are many (in fact, 16) strategies
like this. By the point-wise version (13) of Bell’s four-variable inequality, none of
these 16 extremal strategies wins the game. Inclusion of the randomness coming
from the dice yields a full polytope of random strategies, having the above 16 as
its extremal points. But since the inequalities are linear, this averaging procedure
does not help. This “proves” our “proposition.” Disbelievers are challenged to find
a winning strategy. �

Strangely enough, however, nature does provide us with a strategy to win the
game, still essentially based on the cos2 law 2 for photon absorption! Instead of the
dice, put a calcium atom on the table. When the cards have been dealt, P and Q put
their polarizers in the direction indicated by their cards. If P has a red card, then
he chooses the direction α1 = 0 (cf. Fig. 3). If his card is black, then he chooses
α2 = π

3 . If Q has a red card, then he chooses β1 = π
2 . If his card is black, then he

chooses β2 = π
6 . No information on the colors of the cards needs to be exchanged.

When the calcium atom has produced its photon pair, each player looks whether his
own photon passes his own polarizer, and then says “yes” if it does, “no” if it does
not. On the long run they will get a11 = 1, a12 = a21 = a22 = 1

4 , and thus they win
the game.

So the calcium atom, the quantum mechanical die, makes possible what could
not be done with the classical die.

3 Toward a Mathematical Model

Coerced by the foregoing considerations, we give up trying to make a classical
probabilistic model in order to explain polarization experiments. Instead, we take
these experiments as a paradigm for an alternative type of “quantum” probability, to
be developed now.

3.1 A Mathematical Description of Polarization

We have discussed (linear) polarization of a light beam. This is completely char-
acterized by a direction in the plane perpendicular to the light beam. So we simply
describe states of polarization by different directions in a two-dimensional real plane
R2, or equivalently by unit vectors ψ ∈ R2, ‖ψ ‖ = 1, pointing in this direction.
Actually, since we cannot distinguish between two states which differ by a rotation
of π , we shall describe states of polarization by one-dimensional subspaces of R2.
Given two directions of polarization with an angle α between them, spanned by two
unit vectors ψ, θ ∈ R2, the probability to find polarization ϑ when a photon is in
the state ψ can be expressed as
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cos2 α = 〈ψ, θ〉2, (19)

where 〈ψ, θ〉 denotes the scalar product between ψ and θ .
In the mathematical model we should distinguish between the physical state of

polarization of a photon on the one hand and the filter on the other hand, i.e., the
0–1-valued random variable which asks whether a photon is polarized in a certain
direction. This can be done by identifying the random variable with the orthogonal
projection P onto the one-dimensional subspace. We can then write

cos2 α = 〈ψ, θ〉2 = 〈ψ, Pψ〉 . (20)

Since P is 0–1-valued (a photon passes or is absorbed), this probability is equal to
the expectation of this random variable:

〈ψ, Pψ〉 = E(P) . (21)

3.2 The Full Truth About Polarization: The Qubit

In the foregoing description of polarization things were presented somewhat simpler
than they are: We considered only linear polarization, thus disregarding circular
polarization. The full description of polarization leads to the quantum mechanics of
a two-level system or qubit:

State of polarization of a photon =̂ one-dimensional subspace of C2, descri-
bed by a unit vector ψ spanning this
subspace (and determined only up to a
phase).

Polarization filter or generalized
0–1-valued random variable

=̂ orthogonal projection P onto a complex
one-dimensional subspace.

(Also for left- or right-circular polarization there exist physical filters.)

Probability for a photon, described
by ψ , to pass through a filter,
described by P

=̂ 〈ψ, Pψ〉 .

The set of all states is conveniently parametrized by the unit vectors of the form

(cosα, eiφ sinα) ∈ C2 , −π
2
≤ α ≤ π

2
, 0 ≤ φ ≤ π . (22)

3.3 Finite-Dimensional Models

The mathematical model that is used by quantum mechanics is the straightforward
generalization of the above description. In order to keep things simple, in the fol-
lowing we restrict ourselves to the quantum mechanics in finite dimension. This
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generalizes the probability theory of systems with only finitely many states. As in
classical probability, the generalization to systems with a countably infinite number
of states or a continuum of states is analytically more involved.

The model is as follows: States correspond to one-dimensional subspaces of Cn ,
where the dimension n is determined by the model. Again, a state is described con-
veniently by some unit vector spanning this subspace.

0–1-Valued random variables or events are described by orthogonal projections
onto linear subspaces of Cn . Here also projections onto higher dimensional sub-
spaces make sense.

The probability that a measurement of a random variable P on a system in a state
ψ gives the value 1 is given by 〈ψ, Pψ〉.

Note that we do not assume that every orthogonal projection corresponds to
a meaningful random variable. Specification of random variables is part of the
description of the mathematical model for a given system. In a truly quantum
mechanical situation, typically all projections are used. In contrast to this, classical
probability is obtained by allowing only very few projections, as follows.

3.4 Finite Classical Models

A finite probability space is usually described by a finite set Ω = {ω1, . . . , ωn}
and a probability distribution (p1, . . . , pn), 0 ≤ pi ≤ 1,

∑
i pi = 1, such that the

probability for ωi is pi . A 0–1-valued random variable is a 0–1-valued function on
Ω , i.e., a characteristic function χA of some subset A ⊆ Ω . In order to describe such
a system in our model, we think of Cn as the space of complex-valued functions on
Ω and use the functions δi with δi (ω j ) = δi, j as basis. The states of the system,
i.e., the points ωi of Ω , are now represented by the unit vectors δi , 1 ≤ j ≤ n. The
random variable χA is identified with the orthogonal projection PA onto the linear
span of the vectors {δi : ωi ∈ A}. In our basis χA becomes a diagonal matrix with
a 1 at the i th place of the diagonal if ωi ∈ A, and a 0 otherwise. It is obvious that
ωi ∈ A if and only if χA(ωi ) = 1 if and only if 〈δi , PAδi 〉 = 1.

Conversely, any set of pairwise commuting projections on Cn can be diagonal-
ized simultaneously and thus have an interpretation as a set of classical 0–1-valued
random variables. Therefore

Classical probability corresponds to sets of pairwise commuting projections.

3.5 Mixed States

In the above sketch of quantum probability an important point is still missing: How
can we describe a situation where a photon has one polarization with some prob-
ability q and in another with probability 1–q? Since states must play the role of
probability distributions, this combination should be expressed as a single state of
the photon.
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In general, if P is any 0–1-valued random variable and ψ1, . . . , ψk are arbitrary
quantum states, each occurring with a probability pi , 1 ≤ i ≤ k,

∑
i pi = 1, then

the probability that a measurement of P gives 1 is clearly given by

∑

i

pi 〈ψi , Pψi 〉 . (23)

A more convenient description of mixed states is obtained as follows (compare chap-
ter “Hilbert Space Methods for Quantum Mechanics”). For a unit vector ψ ∈ Cn

denote by ρψ the orthogonal projection onto the one-dimensional subspace gener-
ated by ψ . In the physics literature, ρψ is often denoted by |ψ〉〈ψ |. Let Tr denote
the trace operation (see chapter “Hilbert Space Methods for Quantum Mechanics”,
Eq. (47)) on the n × n matrices, summing up the diagonal entries of such a matrix.
Then one obtains

〈ψ, Pψ〉 = Tr (ρψ P) . (24)

Hence

∑

i

pi 〈ψi , Pψi 〉 = Tr

(
∑

i

piρψi · P

)
= Tr(ρ P) , (25)

where ρ := ∑
i piρψi .

Being a convex combination of one-dimensional projections, ρ is obviously a
positive (i.e., self-adjoint positive semi-definite) n × n matrix with Tr (ρ) = 1.

Conversely, from diagonalizing positive matrices it is clear that any such pos-
itive matrix ρ with Tr (ρ) = 1 can be written as a convex combination of one-
dimensional projections. The set of these matrices forms a closed (even compact)
convex set, and its extreme points are precisely the one-dimensional projections
which in turn correspond to pure states, represented also by unit vectors. Therefore
it is this class of so-called density matrices which represents mixed states. Thus, a
general mixed state is described by a density matrix ρ and the probability for an
observation of P to yield the value 1 is given by Tr (ρ P).

Remark 2

1. A bounded closed set U of a real linear space V is convex if with two points
x1,2 ∈ U it also contains the points xλ = λx1 + (1 − λ)x2, 0 ≤ λ ≤ 1 of the
connecting segment. Those points x ∈ U which can be points xλ of a segment
only if λ = 0 or λ = 1 are called extremal: any point x ∈ U can be written
as a convex combination of the extremal points of U . Such a representation is
unique if and only if U is a simplex; an n-dimensional simplex is a closed convex
set generated by convex combinations of n + 1 points {xi }n+1

i=1 such that the n
connecting lines xi − xn+1 are linearly independent. Given a subset Y ⊆ V , its
closed convex hull U is the smallest convex subset of V such that Y ⊂ U .
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2. The decomposition of a density matrix ρ into a convex combination of one-
dimensional projections is by no means unique. This point will be further elab-
orated in Proposition 6. So the compact convex set of density matrices is not a
simplex at all. Indeed, on C2 it can be identified with a full ball in R3, by taking
in R3 the convex hull of the sphere that was described above.

3. In classical probability the convex set of mixed states is the simplex of all prob-
ability distributions. In our picture, if we insist on decomposing a mixed state
given by ρ = ∑

i pi Pδi into a convex combination of pure states (within the
convex hull of {Pδi : 1 ≤ i ≤ n} which is a simplex), then it becomes unique.

4. Physically, a state ρ is completely described by all of its values Tr (ρ P), where
P runs through the random variables of the model. Thus, if we consider only
subsets of projections, then two different density matrices can represent the same
physical state of the system. As a drastic example, consider the classical system
Ω = {ω1, . . . , ωn}with equidistribution, i.e., pi (ωi ) = 1

n , leading to the density
matrix ρ = ∑

i
1
n Pδi = 1

n · 1l. On the other hand, with the unit vector ψ =
( 1√

n
, . . . , 1√

n
) ∈ Cn , we obtain for any subset A ⊆ Ω:

Tr (ρ PA) = 1

n
· |A| = 〈ψ, PAψ〉 . (26)

Therefore, on the random variables {PA : A ⊆ Ω}, the rank one density matrix
Pψ represents the same state as the density matrix 1

n · 1l. Note, however, that Pψ
is not in the convex hull of {Pδi : 1 ≤ i ≤ n}.

3.6 The Mathematical Model of Aspect’s Experiment

As an illustration, we shall now explain the photon correlation in the Orsay experi-
ment, given by the cos2 law. Note that here we cannot simply refer to the basic cos2

law of quantum probability, since the filters are acting on two different photons.
The polarization of a pair of photons is described by a unit vector in the tensor

product C2 ⊗ C2 = C4, where we use the basis

(1, 0, 0, 0) = e1 ⊗ e1 =: e11,

(0, 1, 0, 0) = e1 ⊗ e2 =: e12,

(0, 0, 1, 0) = e2 ⊗ e1 =: e21,

(0, 0, 0, 1) = e2 ⊗ e2 =: e22,

(27)

with e1 = (1, 0) ∈ C2 and e2 = (0, 1) ∈ C2. For example, in the pure state e12
the left-hand photon is vertically polarized and the right-hand photon horizontally.
As it turns out, the state of the pair of photons as produced by the calcium atom is
described by the state
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ψ = 1√
2
(e12 − e21). (28)

Now, the filters P(α) on the left and Q(β) on the right, introduced in Sect. 2.3, are
represented by two-dimensional projection operators on C4, which are the “two-
right amplification” and the “two-left-amplification” of the polarization matrix

(
cos2 α cosα sinα

cosα sinα sin2 α

)
, (29)

namely

P(α) =
(

cos2 α cosα sinα
cosα sinα sin2 α

)
⊗

(
1 0
0 1

)

=

⎛

⎜⎜⎝

cos2 α 0 cosα sinα 0
0 cos2 α 0 cosα sinα

cosα sinα 0 sin2 α 0
0 cosα sinα 0 sin2 α

⎞

⎟⎟⎠ ,
(30)

Q(β) =
(

1 0
0 1

)
⊗

(
cos2 β cosβ sinβ

cosβ sinβ sin2 β

)

=

⎛

⎜⎜⎝

cos2 β cosβ sinβ 0 0
cosβ sinβ sin2 β 0 0

0 0 cos2 β cosβ sinβ
0 0 cosβ sinβ sin2 β

⎞

⎟⎟⎠ .

(31)

We note that P(α) and Q(β) are commuting projections for fixed α and β. It follows
that P(α)Q(β) is again a projection, as well as the products

P(α)(1l− Q(β)) , (1l− P(α))Q(β) , (1l− P(α))(1l− Q(β)) . (32)

So we obtain the description of a classical probability space with four states, to be
interpreted as

(“left photon passes,” “right photon passes”),

(“left photon passes,” “right photon is absorbed”),

(“left photon is absorbed,” “right photon passes”),

(“left photon is absorbed,” “right photon is absorbed”).

(33)

The probabilities of these four events are found by the actions on ψ = 1√
2
(e12 −

e21) = 1
2 (0, 1,−1, 0) of the four projections. In particular, the probability that both

photons pass is given by
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〈ψ, P(α)Q(β)ψ〉 = 1

2
(0, 1,−1, 0)M

⎛

⎜⎜⎝

0
1
−1
0

⎞

⎟⎟⎠ , (34)

where, setting Ca = cosα, Cb = cosβ and Sa = sinα, Sb = sinβ, the matrix 4×4
matrix M reads

M =

⎛

⎜⎜⎝

C2
aC2

b C2
aCb Sb Ca SaC2

b Ca SaCb Sb

C2
aCb Sb C2

a S2
b Ca SaCb Sb Ca Sa S2

b
Ca SaC2

b Ca SaCb Sb S2
aC2

b S2
aCb Sb

Ca SaCb Sb Ca Sa S2
b S2

aCb Sb S2
a S2

b

⎞

⎟⎟⎠ . (35)

It thus follows that

〈ψ, P(α)Q(β)ψ〉 = 1

2
(cos2 α sin2 β + sin2 α cos2 β − 2 cosα sinα cosβ sinβ)

= 1

2
(cosα sinβ − sinα cosβ)2 = 1

2
sin2(α − β) .

(36)

4 Quantum Probability

In classical probability a model – or probability space – is determined by giving a
set Ω of outcomes ω, by specifying what subsets S ⊂ Ω are to be considered as
events, and by associating a probability P(S) with each of these events.

Requirements: The events must correspond to subsets from a σ -algebra that is a
collection of sets that is closed with respect to all possible (infinite) unions and
intersections of its subsets, which are called measurable; further, the probability
measure P must be σ -additive, namely the probability of any union S = ⋃

j S j of
disjoint measurable subsets, S j ∩ Sk = ∅, must be the sum of the probabilities of
the subsets, P(S) = ∑

j P(S j ), and normalized, i.e., P(Ω) = 1.
In quantum probability we must loosen this scheme somewhat. We must give

up the set Ω of sample points: A point ω ∈ Ω in a classical model decides about
the occurrence or non-occurrence of all events simultaneously, and this we aban-
don. Following our polarization example of Sect. 2 we take as events certain closed
subspaces of a Hilbert space or, equivalently, a set of projections. To all these pro-
jections we associate probabilities.

Requirements:

1. The set of E of all events of a quantum model must be the set of projections in
some ∗-algebra A of operators on H.

2. The probability function P : E → [0, 1] must be σ -additive.
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According to a theorem of Gleason [6], for dim(H) ≥ 3 this implies that the proba-
bilities are given by a state ϕ on A:

P(E) = ϕ(E) (E ∈ A a projection) . (37)

In this section we shall work out the above notions in some detail.

4.1 ∗-Algebras of Operators and States

A Hilbert space is a complex linear space H with a sesquilinear function

H×H→ C : (ψ, χ) �→ 〈ψ, χ〉 , (38)

the inner or scalar product. (For the defining properties of the inner product and the
main facts about Hilbert spaces see chapter “Hilbert Space Methods for Quantum
Mechanics”.)

Let H be a finite-dimensional Hilbert space. By an operator on H we mean a
linear map A : H → H. Operators can be added and multiplied in the natural way.
By the adjoint of an operator A we mean the unique operator A† on H satisfying

∀ψ,ϑ ∈ H : 〈A†ψ,ϑ〉 = 〈ψ, Aϑ〉 . (39)

The norm of an operator A is defined by

‖ A ‖ := sup
{ ‖ Aψ ‖ ∣∣ψ ∈ H, ‖ψ ‖ = 1

}
. (40)

It has the property

∥∥∥ A† A
∥∥∥ = ‖ A ‖2 . (41)

Exercise 1 Prove this!

By a (unital) ∗-algebra of operators on H we mean a subspace A of the space of all
linear maps A : H→ H such that 1 ∈ A and

A, B ∈ A (⇒ λA, A + B, A · B, A† ∈ A . (42)

By a state on A we mean a linear functional ϕ : A→ C satisfying

1. ∀ A ∈ A : ϕ(A† A) ≥ 0 and
2. ϕ(1) = 1.

We shall call a pair (A, ϕ) of the above kind a quantum probability space.
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Examples

1. Let P1, P2, . . ., Pk be mutually orthogonal projections on H with sum 1. Then
their linear span

A :=
⎧
⎨

⎩

k∑

j=1

λ j Pj |λ1, . . . , λk ∈ C

⎫
⎬

⎭ (43)

forms a unital ∗-algebra of operators on H. This is basically the classical model
of Sect. 2.4.: A is isomorphic to C(Ω), the algebra of all complex functions
on the finite set Ω = {1, . . . , k}. If ψ is some vector in H of unit length, it
determines a state ϕ by

ϕ(A) := 〈ψ, Aψ〉 . (44)

The probabilities of this classical model are p j := ϕ(Pj ) =
∥∥ Pjψ

∥∥2. Note that
there are manyψ’s, and even more density matrices ρ (see Sect. 2.4) determining
the same state ϕ on A.

2. Let A be the ∗-algebra Mn of all complex n × n matrices. Let ϕ(A) := Tr (ρA)
with ρ ≥ 0 and Tr (ρ) = 1, as introduced in Sect. 2.4. The state ϕ is called a
pure state if ρ = |ψ〉〈ψ | for some unit vector ψ ∈ H.

The qubit of Sect. 2.2 corresponds to the case n = 2.
The most general way of representing Mn on a (finite-dimensional) Hilbert

space is

H = Cm ⊗ Cn (m ≥ 1); A = {
1⊗ A

∣∣ A ∈ Mn
}
. (45)

3. Let k, n1, . . . , nk , m1, . . . ,mk be natural numbers and let the Hilbert space H be
given by

H := (
Cm1 ⊗ Cn1

)⊕ (
Cm2 ⊗ Cn2

)⊕ · · · ⊕ (
Cmk ⊗ Cnk

)
. (46)

Let A be the ∗-algebra given by

A := {
(1⊗ A1)⊕ · · · ⊕ (1⊗ Ak)

∣∣ A j ∈ Mn j for j = 1, . . . , k
}
. (47)

Let ψ = ψ1 ⊕ · · · ⊕ ψk be a unit vector in H and

ϕ(A) := 〈ψ, Aψ〉 =
k∑

j=1

〈ψ j , A jψ j 〉 . (48)

If m j ≥ n j∀ j then every state on A is of the above form. Otherwise, density
matrices may be needed.
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In finite dimension Example 1 is the only commutative possibility, Example 2 is
the “purely quantum mechanical” situation, and Example 3 is the most general case.

Theorem 1 Every Abelian, that is commutative, ∗-algebra of operators on a finite-
dimensional Hilbert space is isomorphic to C(Ω) for some finite Ω .

This is the finite-dimensional version of Gel’fand’s theorem [3] on commutative
(C∗)-algebras.
Proof Since the operators in A all commute, there exists an orthonormal basis
e1, . . . , en in H on which they are all represented by diagonal matrices. Then the
states ω j : A �→ 〈e j , Ae j 〉 are multiplicative:

ω j (AB) = 〈e j , ABe j 〉 =
n∑

i=1

〈e j , Aei 〉〈ei , Be j 〉 = 〈e j , Ae j 〉〈e j , Be j 〉

= ω j (A)ω j (B) .

(49)

These states need not all be different; let Ω := (ω j1, . . . , ω jk ) be a maximal set of
different ones. Then the map

ι : A→ C(Ω) : ι(A)(ω) := ω(A) (50)

is an isomorphism. The projections of Example 1 are found back as the operators
Pω := ι−1(δω). �

Exercise 2 Check that the map ι defined above is indeed an isomorphism of
∗-algebras.

Definition 1 By the commutant of a set S of operators on H we mean the ∗-algebra

S ′ := {
B : H→ H linear

∣∣∀ A ∈ S : AB = B A
}
. (51)

The algebra generated by 1 and S we denote by alg (S). The center of a ∗-algebra
A is the (commutative) ∗-algebra Z given by

Z := A ∩A′ . (52)

Exercise 3 Find the center of A in each of the examples 1, 2, and 3.

Theorem 2 (Double Commutant Theorem [3]) Let S be a set of operators on a
finite-dimensional Hilbert space H, such that X ∈ S (⇒ X† ∈ S. Then

alg (S) = S ′′ . (53)
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Proof Clearly S ⊂ S ′′, and since S ′′ is a ∗-algebra, we have alg (S) ⊂ S ′′. We
shall now prove the converse inclusion. Let B ∈ S ′′ and let A := alg (S). We must
show that B ∈ A.

Step 1: Choose ψ ∈ H and let P be the orthogonal projection onto Aψ . Then for
all X ∈ S and A ∈ A

X P Aψ = X Aψ ∈ Aψ (⇒ X P Aψ = P X Aψ . (54)

So X P and P X coincide on the space Aψ . But if ϑ ⊥ Aψ , then Pϑ = 0 and for
all A ∈ A

〈Xϑ, Aψ〉 = 〈ϑ, X† Aψ〉 = 0 , (55)

so Xϑ ⊥ Aψ as well. Hence P Xϑ = 0 = X Pϑ , and the operators X P and P X
also coincide on the orthogonal complement of Aψ . We conclude that X P = P X ,
i.e., P ∈ S ′. But then we also have B P = P B, since B ∈ S ′′. So

Bψ = B Pψ = P Bψ ∈ Aψ , (56)

and Bψ is of the form Aψ for some A ∈ A.

Step 2: But this is not sufficient: We must show that Bψ = Aψ for all ψ in a basis
for H.

So choose a basis ψ1, . . . , ψn of H. We define

H̃ := H⊕H⊕ · · · ⊕H = Cn ⊗H ,
Ã := {

A ⊕ A ⊕ · · · ⊕ A
∣∣ A ∈ A

} = A⊗ 1 ,

ψ̃ := ψ1 ⊕ ψ2 ⊕ · · · ⊕ ψn .

(57)

Then (Ã)′ = (A ⊗ 1)′ = A′ ⊗ Mn and (Ã)′′ = (A′ ⊗ Mn)
′ = A′′ ⊗ 1. So

B ⊗ 1 ∈ (Ã)′′. By step 1 we find an element Ã of Ã, such that

Ãψ̃ = (B ⊗ 1)ψ̃ . (58)

But Ã ∈ Ã must be of the form A ⊗ 1 with A ∈ A, so

Aψ1 ⊕ · · · ⊕ Aψn = Bψ1 ⊕ · · · ⊕ Bψn . (59)

This implies that A = B, hence B ∈ A. �

Exercise 4 Find the algebra generated by 1 and the matrix

⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ . (60)
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We give the following proposition without proof. It characterizes the situation of
Example 2.

Proposition 4 If the center of A contains only multiples of 1, then H and A must
be of the form

H = Cm ⊗ Cn, with A = {
1⊗ A

∣∣ A ∈ Mn
}
. (61)

Proposition 5 Let H be a finite-dimensional Hilbert space. Then every ∗-algebra of
operators on H can be written in the form of Example 3.

Proof The center A ∩ A′ is an Abelian (commutative) ∗-algebra, so Theorem 1
applies, giving a set of projections Pj , j = 1, . . . , k. Then it is not difficult to show
that the unital ∗-algebras PjAPj on the Hilbert subspaces PjH satisfy the condition
of Proposition 4. The statement follows. �

4.2 The Qubit

The simplest non-commutative ∗-algebra is M2, the algebra of all 2 × 2 matrices
with complex entries. And the simplest state on M2 is 1

2 Tr , the quantum analogue
of a fair coin.

The events in this probability space are the orthogonal projections in M2: the
complex 2× 2 matrices E satisfying

E2 = E = E† . (62)

Let us see what these projections look like. Since E is self-adjoint, it must have two
real eigenvalues, and since E2 = E these must be both 0 and 1. So we have three
possibilities:

• Both are 0, i.e., E = 0.
• One of them is 0 and the other is 1.
• Both are 1, i.e., E = 1.

In the second case, E is a one-dimensional projection satisfying

Tr E = 0+ 1 = 1, det E = 0 · 1 = 0 . (63)

As E† = E and Tr E = 1 we may write

E = E(x, y, z) = 1
2

(
1+ z x − iy
x + iy 1− z

)
. (64)

Then det E = 0 implies that

1
4 ((1− z2)− (x2 + y2)) = 0 (⇒ x2 + y2 + z2 = 1 . (65)
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So the one-dimensional projections in M2 are parametrized by the unit sphere S2.
Notation: For a = (a1, a2, a3) ∈ R3 let us write

σ(a) :=
(

a3 a1 − ia2
a1 + ia2 −a3

)
= a1σ1 + a2σ2 + a3σ3 , (66)

where σ1, σ2, and σ3 are the Pauli matrices

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
. (67)

We note that for all a, b ∈ R3 we have

σ(a)σ (b) = 〈a, b〉·1l+ iσ(a × b) . (68)

We may now write (64) as

E(a) := 1
2 (1+ σ(a)) (‖ a ‖ = 1) . (69)

In the same way the possible states on M2 can be calculated. We find that

ϕ(A) = Tr (ρA) where ρ = ρ(a) := 1
2 (1+ σ(a)), ‖ a ‖ ≤ 1 . (70)

The probability of the event E(a) in the state ρ(b) is given by Tr (ρ(b)E(a)) =
1
2 (1 + 〈a, b〉). The events E(a) and E(b) are compatible if and only if a = ±b.
Moreover we have for all a ∈ S2: E(a)+ E(−a) = 1 , E(a)E(−a) = 0.
Interpretation: The state of the qubit is given by a vector b in the three-dimensional
unit ball. For every a on the unit sphere we can say with probability 1 that of
the two events E(a) and E(−a) exactly one will occur, E(a) having probability
1
2 (1 + 〈a, b〉). So we have a classical coin toss (with probability for heads equal to
1
2 (1 + 〈a, b〉)) for every direction in R3. The coin tosses in different directions are
incompatible (see Fig. 5).

The quantum coin toss is realized in nature: apart from photon polarization (see
Sect. 3.2), the spin direction of a particle with total spin 1

2 behaves in this way.

4.3 Photons

There is a second natural way to parametrize the one-dimensional projections in M2,
which is closer to the description of polarization of photons, as treated in Sect. 3.2.

The projection onto the one-dimensional subspace spanned by the unit vector
(cosα, eiϕ sinα) mentioned in (22) of that section is given by

F(α, ϕ) =
(

cos2 α e−iϕ cosα sinα
eiϕ cosα sinα sin2 α

)
. (71)
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2α

α = 0: vertically polarized 

α = 90° horizontally polarized 

left circular polarized right circular polarized

45° polarized

–45° polarized

Fig. 5 Bloch sphere of the qubit

Equating this projection to E(x, y, z) in (64) we obtain the relations x =
sin 2α cosϕ, y = sin 2α sinϕ, and z = cos 2α; they define a mapping between
the polarization states of a photon and the points of the unit sphere in R3, called the
Bloch sphere in this context.

In particular, the projection F(α, 0) onto the line in C2 with real slope tanα with
α ∈ [−π/2, π/2) is given by

F(α, 0) =
(

cos2 α cosα sinα
cosα sinα sin2 α

)
= E(sin 2α, 0, cos 2α) . (72)

Finally, any atomic or molecular system, only two energy levels of which are of
importance in the experiment, can be described by some (M2, ϕ).

Exercise 5 Let f : C ∪ {∞} → S2 be given by

f (0) := (0, 0, 1) ;
f (∞) := (0, 0,−1) ;

f (reiϕ) := (sinϑ cosϕ, sinϑ sinϕ, cosϑ)

with ϑ = 2 arctan r, r ∈ (0,∞), ϕ ∈ [0, π) .

(73)

Show that E( f (z)) is the one-dimensional projection onto the line in C2 with slope
z ∈ C.
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5 Operations on Probability Spaces

Our main objects of study will be operations on probability spaces. This means that
we shall focus attention on the input–output aspect of probabilistic systems.

5.1 Operations on Classical Probability Spaces

It could be maintained that operations are already the core of classical probability.
We start with a definition on the level of points.

Definition 2 By an operation from a finite classical probability space Ω to a finite
classical probability space Ω ′ we mean an Ω × Ω ′ transition matrix, i.e. a matrix
(tωω′) of nonnegative numbers satisfying

∀ω ∈ Ω :
∑

ω′∈Ω ′
tωω′ = 1 . (74)

Example 1

1. Let τ be a bijection Ω → Ω ′. We may think of rearranging a deck of cards,
(Ω = Ω ′ = {cards}), or the time evolution of a mechanical system (Ω = Ω ′ =
phase space), or the shift on sequences of letters, or just some relabeling of the
outcomes of a statistical experiment. The associated matrix is

tωω′ :=
{

1 if ω′ = τ(ω),
0 otherwise.

(75)

2. Let X : Ω → Ω ′ be surjective. We think of X as anΩ ′-valued random variable,
where Ω ′ is usually some subset of R or Rn or so. The associated operation is
that of “measuring X” or “forgetting everything about ω except the value of X .”
The associated matrix is again

tωω′ :=
{

1 if ω′ = X (ω),

0 otherwise.
(76)

3. An inverse to the operation of Example 2 is given by

tω′ω :=
{

π({ω})
π(X−1({ω′})) if ω′ = X (ω),

0 otherwise.
(77)

Here π is some probability distribution, which we assume to be everywhere
nonzero. This operation describes the immersion of a system Ω ′ into the larger
system Ω .
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It can be shown that every transition matrix can be decomposed as a product of
matrices of the types 3, 1, and 2. So every operation can be decomposed as an
immersion, followed by a rearrangement and a restriction. Such a decomposition is
called a dilation of the operation in question.

5.2 Quantum Operations

If A is a unital ∗-algebra describing a quantum system, then we denote by A∗ the
dual of A and by A∗+,1 the positive normalized functionals, i.e., the states on A. By
Mn(A) we denote the unital ∗-algebra of all n × n matrices with entries in A. Note
that Mn(A) is isomorphic to Mn ⊗A.

Now suppose that we perform a physical operation which takes as input a state
on the system A and yields as its output a state on the system B. Which maps
f : A∗+,1 → B∗+,1 can occur as descriptions of such an operation? We formulate
three natural requirements:

1. f must be an affine map. This means that for all ρ, θ ∈ A∗+,1 and all λ ∈ [0, 1]
λ f (ρ)+ (1− λ) f (ϑ) = f

(
λρ + (1− λ)ϑ)

. (78)

This request comes from the stochastic equivalence principle which states that
a system which is in state ρ with probability λ and in state ϑ with probability
1−λ cannot be distinguished from a system in the state λρ+ (1−λ)ϑ . A map f
satisfying this condition can be extended to a unique linear map A∗ → B∗, since
every element of A∗ can be written as a linear combination of (at most four)
states on A. So f must be the adjoint (or dual, see chapter “Bipartite Quantum
Entanglement”, Sect. 3) of some linear map T : B → A. We shall henceforth
write T ∗ instead of f .

2. Of course, f = T ∗ must still map A∗+,1 to B∗+,1 for all ρ ∈ A∗,

Tr (T ∗(ρ)) = Tr (ρ) ,

T ∗(ρ) ≥ 0 if ρ ≥ 0 .
(79)

3. It would seem at first sight that nothing more can be said a priori about T ∗. How-
ever, it was realized in the early 1980s by Karl Kraus [7] (see chapter “Hilbert
Space Methods for Quantum Mechanics”, Sect. 2.4) that the positivity property
has to be strengthened in quantum mechanics: If the system under consideration
is in a combined state with some other system, then after performing the opera-
tion T ∗ on the former system, the whole combination must still be in some (pos-
itive) state. Surprisingly, this is not automatic in the quantum situation, where
“entanglement,” as treated in Sect. 2 (see chapter “Bipartite Quantum Entan-
glement” for more details on this point), can occur between the two systems.
See Example 2. Therefore this stronger form of positivity must be added as a
requirement: For all n ∈ N

id n ⊗ T ∗ maps states on Mn ⊗A to states on Mn ⊗ B . (80)



90 H. Maassen

Requirement (3) is called complete positivity of the map T ∗ (or T for that matter).
Summarizing we arrive at the following definition, which we shall formulate in the
contravariant, “Heisenberg” picture.

Definition 3 A linear map T : B → A is called an operation (from A to B!) if the
following conditions hold:

1. T (1B) = 1A.
2. T is completely positive, i.e., id n⊗T is positive Mn(B)→ Mn(A) for all n ∈ N.

Here Mn(A) stands for the algebra of n×n matrices with entries in A. This algebra
is isomorphic to Mn ⊗A.

Example 2 A map which is positive, but not completely positive:
Let A := M2 and let

T ∗ : A∗ → A∗ :
(

a b
c d

)
�→

(
a c
b d

)
(81)

be the transposition map. Then T ∗ is linear, positive, and preserves the trace. How-
ever, T ∗ is not completely positive since

id 2 ⊗ T ∗ : 1

2

⎛

⎜⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞

⎟⎟⎠ �→ 1

2

⎛

⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟⎟⎠ . (82)

The matrix on the left is a projection (on the vector (e0 ⊗ e0 + e1 ⊗ e1)/
√

2 ∈
C2 ⊗ C2; compare the entangled state of Sect. 2.5), whereas the matrix on the left
has eigenvalues 1

2 ,
1
2 ,

1
2 , and − 1

2 , hence is not a valid density matrix. However, if
A or B is Abelian, that is commutative, then any positive operator T : A → B is
automatically completely positive.

5.3 Examples of Quantum Operations

• Let U ∈ Mn be unitary. Then the automorphism T : Mn → Mn : A �→ U † A U
is an operation (see Lemma 1).

• The ∗-homomorphism j : Mk → Ml ⊗ Mk : A �→ 1 ⊗ A is an operation (see
Lemma 1).

• Let ϕ be a state on Mk . Then the map E : Ml ⊗ Mk → Mk : B ⊗ A �→ ϕ(B)A
is an operation.

The above examples are to be compared with those in Sect. 4.1. We shall prove their
validity in two lemmas.

Lemma 1 If A ⊂ Mk and T : A→ B ⊂ Ml is a ∗-homomorphism, i.e., if for all A,
B ∈ A we have T (AB) = T (A)T (B) and T (A†) = T (A)†, then T is completely
positive.
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Proof We must show that for all n ∈ N the map

id n ⊗ T : (
Ai j

)n
i, j=1 �→

(
T (Ai j )

)n
i, j=1 (83)

is positive. Indeed, for all ψ = (ψ1, . . . , ψn) ∈ (Cl)n , putting A = X† X with
X ∈ Mn(A)

〈ψ, (id n ⊗ T )(X† X)ψ〉 =
l∑

i,i ′=1

〈ψi , T
(
(X† X)i i ′

)
ψi ′ 〉

=
l∑

i,i ′=1

n∑

j=1

〈ψi , T
(
X†

j i X ji ′
)
ψi ′ 〉

=
l∑

i,i ′=1

n∑

j=1

〈ψi , T (X ji )
† T (X ji ′)ψi ′ 〉

=
n∑

j=1

∥∥∥∥∥

l∑

i=1

T (X ji )ψi

∥∥∥∥∥

2

≥ 0 .

(84)

�
Lemma 2 Let A ⊂ Mk, B ⊂ Ml and let V be a linear map Cl → Ck . Then

T : A→ B : A �→ V † A V (85)

is completely positive.

Proof If (Ai j )
n
i, j=1 ∈ Mn(A) is positive, then for all (ψ1, . . . , ψn) ∈ (Cl)n =

Cn ⊗ Cl we have

〈ψ, (id n ⊗ T )(A)ψ〉 =
n∑

i, j=1

〈ψi , T (Ai j )ψ j 〉 =
n∑

i, j=1

〈ψi , V † Ai j Vψ j 〉

=
n∑

i, j=1

〈Vψi , Ai j Vψ j 〉 ≥ 0 .

(86)

�
Lemma 2 covers the third case in Example 5.3 since ϕ can be decomposed into pure
states as ϕ = ∑

i 〈ψ, ·ψ〉 and

ϕ(B)A =
l∑

i=1

λi 〈ψi , Bψi 〉A =
l∑

i=1

λi V †
i (B ⊗ A) Vi , (87)

where Vi : Ck → Cl ⊗ Ck : ϑ �→ ψi ⊗ ϑ .
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5.4 Unraveling Quantum Operations

The following important theorem, together with Proposition 5, characterizes all
completely positive maps on finite-dimensional matrix algebras (the version of this
result given by Kraus has been discussed in chapter “Quantum Probability and
Quantum Information Theory”, Sect. 2.4).

Theorem 3 (Stinespring 1955) Let T be a linear map Mk → Ml. Then T is com-
pletely positive if and only if there exist m ∈ N and operators V1, . . . , Vm : Cl →
Ck such that for all A ∈ Mk

T (A) =
m∑

i=1

V †
i A Vi . (88)

We shall give a proof based on a physical argument (cf. [10]). The system is put in
an entangled state with a second system, which for convenience we describe by the
opposite algebra (see below). Then we act on the main system with our operation
T , and by complete positivity we get a new state on the pair. Surprisingly, this state
fully characterizes the operation T . By decomposing the state into vector states we
shall obtain the unraveling we wanted.

Let us first introduce some notation. If H is a (finite-dimensional) Hilbert space,
let H′ denote its dual, the space of all linear functionals H→ C. The elements of H′
are of the form ϑ : χ �→ 〈ϑ, χ〉; in Dirac notation ϑ is denoted as 〈ϑ |. This dual H′
is actually isomorphic to H itself, but it is convenient to maintain the distinction, as
we shall see below. In particular, if H = Cn , then there is a natural action on H′ of
the algebra Mt

n , the opposite algebra of Mn , which has the multiplication reflected:
At Bt = (B A)t . The operator At acts on χ as Atχ := χ ◦ A.

Now consider the tensor product Hkl := Ck ⊗ (Cl)′ of the Hilbert space Ck and
the dual of Cl . By identifying the vector ψ ⊗ ϑ ∈ Hkl with the operator |ψ〉〈ϑ |:
χ �→ 〈ϑ, χ〉 · ψ , the Hilbert space Hkl can alternatively be viewed as the space of
all operators Cl → Ck . On this Hilbert space the algebra Mk ⊗ Mt

l acts naturally as
follows:

A ⊗ Bt : ψ ⊗ ϑ �→ Aψ ⊗ Btϑ

[
≈ A|ψ〉〈ϑ |B

]
. (89)

The space Hll has a rotation-invariant vector (the so-called fully entangled state on
Ml ⊗ Mt

l ), given by

Ω := 1√
l

l∑

i=1

ei ⊗ ei

[
≈ 1√

l

l∑

i=1

|ei 〉〈ei | = 1l/
√

l

]
, (90)

for any orthonormal basis e1, . . . , el of Cl . This vector has the property that
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〈Ω, (A ⊗ Bt )Ω〉 = 1

l

l∑

i=1

l∑

j=1

〈ei ⊗ ei , (A ⊗ Bt )e j ⊗ e j 〉

= 1

l

l∑

i=1

l∑

j=1

〈ei , Ae j 〉〈ei , Bt e j 〉

= 1

l

l∑

i=1

l∑

j=1

〈ei , Ae j 〉〈e j , Bei 〉 = 1

l
Tr (AB) . (91)

Proof of Stinespring’s Theorem The “if” part follows immediately from Lemma 2.
For the “only if” part, assume that T : Mk → Ml is completely positive. Let Hll :=
Cl ⊗ (Cl)′ as above and let ω denote the state

ω(X) := 〈Ω, XΩ〉 (92)

on B(Hll) ≈ Ml ⊗ Mt
l .

Since T is completely positive, the functional ωT on B(Hkl) ≈ Mk ⊗ Mt
l ,

given by

ωT (A ⊗ Bt ) := ω(T (A)⊗ Bt ) (93)

is also a state. Decompose ωT into pure states given by vectors v1, v2, . . . , vm ∈
Hkl :

ωT (X) =
m∑

i=1

〈vi , Xvi 〉 . (94)

Now, as noted above, vi ∈ Hkl can be considered as an operator Vi : Cl → Ck . We
shall show that these operators satisfy requirement (88) of the theorem. Indeed, for
all ψ,ϑ ∈ Cl

m∑

i=1

〈ψ, V †
i A Viϑ〉 =

m∑

i=1

〈Viψ, AViϑ〉 =
m∑

i=1

〈vi ,
(

A ⊗ (|ψ〉〈ϑ |))vi 〉Hkl

= ωT
(

A ⊗ (|ψ〉〈ϑ |)) = ω(
T (A)⊗ (|ψ〉〈ϑ |))

= Tr
(
T (A)(|ϑ〉〈ψ |)) = 〈ψ, T (A)ϑ〉 .

(95)

�

The second step is verified by substituting Vi = ∑
j |αi

j 〉〈β i
j | with αi

j ∈ Ck ,

β i
j ∈ Cl and realizing that vi = ∑

j α
i
j ⊗ β i

j .
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5.5 Uniqueness of Unravelings

Unraveling (88) is not unique.1 If the matrices V1, . . . , Vm are linearly independent,
then they are determined by the completely positive map T up to a transformation
of the form

V ′
i :=

m∑

j=1

ui j Vj , (96)

where u is a unitary m × m matrix of complex numbers. In this independent case
the number m of terms in the unraveling takes its minimal value, which we shall call
the rank of the operation T .

In general, any number m of terms, also larger than the rank, can occur in the
unraveling of T . But in that case the operators Vi are not linearly independent. In
fact, the space D of dependencies, given by

D :=
{
λ ∈ Cm |

m∑

i=1

λ∗i Vi = 0

}
, (97)

has dimension m− rank(T ) and the matrix u of (96) is a partial isometry with initial
space D⊥ and final space (D′)⊥, where D′ denotes the space of dependencies of
the V ′

i .
We shall now prove these statements in the context of the decomposition of states.

From the proof of Theorem 3 it is clear that they carry over to operations.

Proposition 6 Let ϕ be a state on A := Mk and let two decompositions of ϕ into
pure states be given

ϕ(A) =
m∑

i=1

〈ψi , Aψi 〉 =
n∑

j=1

〈ϑ j , Aϑ j 〉 . (98)

Let D ⊂ Cm and D′ ⊂ Cn denote the dependency spaces of ψ = (ψ1, . . . , ψm) and
ϑ = (ϑ1, . . . , ϑn), respectively. Then ψ and ϑ are connected by a transformation
of the form

ϑ j =
m∑

i=1

u jiψi , (99)

where the n × m matrix u describes a partial isometry Cm → Cn with initial
space D⊥ and final space (D′)⊥. In particular, if the m-tuple (ψ1, . . . , ψm) and

1 This section elaborates on a remark by Mark Fannes and can be skipped in a first reading.
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the n-tuple (ϑ1, . . . , ϑn) are both sequences of independent vectors, then n = m
and u is unitary.

Proof Consider ψ and ϑ as vectors in H := (Ck)m = Cm⊗Ck and H′ := (Ck)n =
Cn ⊗ Ck , respectively. Then (98) can be written in the form

ϕ(A) = 〈ψ, (1m ⊗ A)ψ〉 = 〈ϑ, (1n ⊗ A)ϑ〉 . (100)

Let Λ ⊂ H and Λ′ ⊂ H′ be the subspaces consisting of the vectors (1m ⊗ A)ψ
and (1n ⊗ A)ϑ , respectively, where A runs through the matrix algebra A = Mk . Let
U : Λ→ Λ′ be given by

U (1m ⊗ A)ψ := (1n ⊗ A)ϑ . (101)

Then U is well defined, isometric, and onto since

‖ (1n ⊗ A)ϑ ‖2 = 〈(1n ⊗ A)ϑ, (1n ⊗ A)ϑ〉 = 〈ϑ, (1n ⊗ A† A)ϑ〉
= ϕ(A† A) = ‖ (1m ⊗ A)ψ ‖2 .

(102)

We extend U to a map H → H′ by putting Uχ = 0 for all χ ∈ H which are
orthogonal to Λ.

Next, let us show that U is actually of the form u ⊗ 1k for some partial isometry
u : Cm → Cn . This is equivalent to the statement that for all A ∈ Mk :

U (1m ⊗ A) = (1n ⊗ A)U , (103)

which is true since (1m ⊗ A) leaves Λ⊥ invariant, so that both sides vanish on Λ⊥.
And for χ ∈ Λ, i.e., for χ = (1m ⊗ X)ψ with X ∈ Mk , we have

U (1m ⊗ A)χ = U (1m ⊗ A)(1m ⊗ X)ψ = U (1m ⊗ AX)ψ = (1n ⊗ AX)ϑ

= (1n ⊗ A)(1n ⊗ X)ϑ = (1n ⊗ A)U (1m ⊗ X)ψ = (1n ⊗ A)Uχ .
(104)

It remains to be shown that

Λ⊥ = D ⊗ Ck (105)

(and analogously (Λ′)⊥ = D′ ⊗ Ck). Clearly, for all λ ∈ Cm and μ ∈ Ck ,

〈λ⊗ μ, (1⊗ A)ψ〉 =
m∑

i=1

λ∗i 〈μ, Aψi 〉 =
〈

A† μ,

(
m∑

i=1

λ∗i ψi

)〉
. (106)

It follows that for λ ∈ D the vector λ⊗μ is orthogonal toΛ, so we have D⊗Ck ⊂
Λ⊥. To prove the converse inclusion, we first note that the orthogonal projection
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onto Λ is U † U = u† u ⊗ 1k , hence Λ = E ⊗ Ck for some subspace E of Cm . We
must show that E⊥ ⊂ D. So suppose that λ ⊥ E , so that λ⊗μ ⊥ Λ for all μ ∈ Ck .
Putting A = 1 in (106) we find that the left-hand side, and hence the right-hand
side, is 0 for all μ, so

∑m
i=1 λ

∗
i ψi = 0 and λ ∈ D. �

5.6 Properties of Quantum Operations

When A and B are operators on a Hilbert space, we mean by A ≥ B that the differ-
ence A − B is a positive operator. The following is an extremely useful inequality
for operations.

Proposition 7 (Cauchy–Schwartz for operations) Let A and B be *-algebras of
operators on Hilbert spaces H and K and let T : A→ B be an operation. Then we
have for all A ∈ A

T (A† A) ≥ T (A)† T (A) . (107)

Proof The operator X ∈ M2 ⊗A given by

X :=
(

A† A −A†

−A 1

)
=

(
A −1
0 0

)† (
A −1
0 0

)
(108)

is positive. Since T is completely positive and T (1) = 1, it follows that also

(id ⊗ T )(X) =
(

T (A† A) −T (A)†

−T (A) 1

)
(109)

is a positive operator. Putting ξ := ψ ⊕ T (A)ψ we find that

〈ξ, (id ⊗ T )Xξ 〉 = 〈ψ, (T (A† A)− T (A)† T (A)
)
ψ〉 (110)

is positive for all ψ ∈ H. �

Theorem 4 (Multiplication theorem) If T : A→ B is an operation and T (A† A) =
T (A)† T (A) for some A ∈ A, then T (A† B) = T (A)† T (B) and T (B† A) =
T (B)† T (A) for all B ∈ A.

Proof Take any B ∈ A and λ ∈ R. Then

T
(
(A† +λB†)(A+λB)

) = T (A)† T (A)+λT (A† B+B† A)+λ2T (B† B) , (111)

while by Cauchy–Schwartz

T
(
(A† + λB†)(A + λB)

)

≥ T (A)† T (A)+ λ(T (A)† T (B)+ T (B)† T (A))+ λ2T (B)† T (B)) . (112)
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This inequality holds for all λ ∈ R which implies

T (A† B + B† A) ≥ T (A)† T (B)+ T (B)† T (A) . (113)

Replacing A by iA and B by −iB shows that the opposite inequality also holds,
so we have equality. Finally replacing only B by iB shows that T (A† B) =
T (A)† T (B) and T (B† A) = T (B)† T (A). �
In particular, if a Cauchy–Schwartz equality holds for an operation T then T is a
*-homomorphism.

Theorem 5 (Embedding theorem) Let (A, ϕ) and (B, ψ) be non-degenerate quan-
tum probability spaces and let j : A → B, E : B → A be operations which
preserve the states. If

E ◦ j = id A , (114)

then j is an injective *-homomorphism and P := j ◦E is a conditional expectation,
i.e.,

P(C1 B C2) = C1 P(B)C2 (115)

for all C1,C2 ∈ j (A) and all B ∈ B.

Following the language used in Sect. 4.1 we shall call j a random variable and P
the conditional expectation with respect to ψ , given j . Compare the following proof
with that of Theorem 4.
Proof For any A ∈ A we have by Cauchy–Schwartz

A† A = E◦ j
(

A† A
) ≥ E

(
j (A))† j (A)

) ≥ (
E◦ j (A)

)† (
E◦ j (A)

) = A† A , (116)

so we have equalities here. In particular

ψ
(

j (A† A)− j (A)† j (A)
) = ϕ ◦ E

(
j (A† A)− j (A)† j (A)

) = 0 . (117)

As (B, ψ) is non-degenerate, j (A† A) = j (A)† j (A), i.e., j is a *-homomorphism.
j is injective since it has the left-inverse E .
But also from (116) we have E

(
j (A)† j (A)

) = E ◦ j (A)† E ◦ j (A). The Multipli-
cation Theorem 4 then implies that for all B ∈ B and A1 ∈ A,

E( j (A1)
† B) = E ◦ j (A1)

† E(B) = A†
1 E(B) , (118)

and similarly, with A2 ∈ A

E
(

j (A1)
† B j (A2)

) = E
(

j (A1)
† B

)
E ◦ j (A2) = A†

1 E(B)A2 . (119)

Applying j to both sides we find (115). �
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6 Quantum Impossibilities

The result of any physical operation applied on a probabilistic system (quantum or
not) is described by a completely positive identity preserving map from the state
space of that system to the state space of the resulting system. This imposes strong
restrictions on what can be done. Some of these are well-known quantum principles,
such as the Heisenberg principle (“no measurement without disturbance”), some are
surprising and relatively recent discoveries (“no cloning”), but all of them obtain
quite neat formulations in the language of quantum probability.

6.1 No-Cloning

In its original formulation [5, 11] the “No-Cloning Theorem” dealt with the repro-
duction of nonorthogonal vector states. Here we give an algebraic version, which
distinguishes clearly between the classical and the quantum cases.

“Cloning”, or – more mundanely – copying a stochastic object is an operation
which takes as input an object in some state ρ and yields as its output a pair of
objects with identical state spaces, such that, if we throw away one of them, we are
left with a single object in the state ρ (cf. Fig. 6, which is actually not complete: the
same equality should hold with the other output line blocked).

In a formula, for all ρ ∈ A∗+,1

(Tr ⊗ id ) ◦ C∗(ρ) = (id ⊗ Tr ) ◦ C∗(ρ) = ρ . (120)

Reformulated in the Heisenberg picture: We call an operation C : A ⊗ A → A a
copying operation or copier if for all A ∈ A:

C(1⊗ A) = C(A ⊗ 1) = A . (121)

As is well known, copying presents no problem in classical physics or classical
probability. Here is an example of a classical copying operation. For simplicity, let
us think of the operation of copying n bits. Let Ω denote the space {0, 1}n of all
strings of n bits and let exp(1) be the “copying” map Ω → Ω ×Ω : ω �→ (ω, ω).
This map induces an operation

C : C(Ω)× C(Ω)→ C(Ω) : C f (ω) := f ◦ exp(1)(ω) = f (ω, ω) . (122)

Clearly, for all f ∈ C(Ω):

C(1⊗ f )(ω) = (1⊗ f )(ω, ω) = f (ω) , (123)

Fig. 6 Definition of a copier

=C*
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and the same holds for C( f ⊗ 1), so (121) is satisfied. In the Schrödinger picture
our operation looks as follows: for any probability distribution π on Ω ,

(C∗π)(ν, ω) = δνωπ(ω) , (124)

and we see that (120) is satisfied:

(Tr ⊗ id ) ◦ C∗(π)(ω) =
∑

ν∈Ω
δνωπ(ω) = π(ω) . (125)

The following theorem says that this construction is only possible in the Abelian
(i.e., commutative) case.

Theorem 6 (“No-cloning”) Let A be a ∗-algebra of operators on a (finite-
dimensional) Hilbert space. Then A admits a copying operation if and only if A
is Abelian.

Proof If A is Abelian, by Gel’fands Theorem 1, A is isomorphic to C(Ω) for some
finite setΩ , and the above construction of a copier applies. Conversely, suppose that
C : A⊗A→ A is a copying operation. Then (121) implies that for all A ∈ A

C
(
(1⊗ A)†(1⊗ A)

) = C(1⊗ A† A) = A† A = C(1⊗ A)† C(1⊗ A). (126)

Then it follows from the Multiplication Theorem 4 that for all A, B ∈ A

A B = C(A ⊗ 1)C(1⊗ B) = C
(
(A ⊗ 1)(1⊗ B)

)

= C
(
(1⊗ B)(A ⊗ 1)

) = C(1⊗ B)C(A ⊗ 1) = B A .
(127)

�

6.2 No Classical Coding

Closely related to the above is the rule that “quantum information cannot be clas-
sically coded”: It is not possible to operate on a quantum system, extracting some
information from it, and then from this information reconstruct the quantum system
in its original state:

ρ ∈ A∗ C∗�−→π ∈ B∗ D∗�−→ ρ ∈ A∗ . (128)

We formulate this theorem in the contravariant (“Heisenberg”) picture:

Theorem 7 Let A and B be *-algebras and let C : B → A and D : A → B
be operations, (“coding” and “decoding”), such that C ◦ D = id A. Then if B is
Abelian, so is A.
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Proof We have for all A ∈ A

A† A = C ◦ D(A† A) ≥ C
(
D(A)† D(A)

) ≥ A† A (129)

and

AA† = C ◦ D(AA†) ≥ C
(
D(A)D(A)†

) ≥ AA† , (130)

whence equality holds everywhere. If B is Abelian, then D(A)† D(A) =
D(A)D(A)† and A† A = AA†. �

Exercise 6 Prove that, if A† A = AA† for all A ∈ A, then A is Abelian.

6.3 The Heisenberg Principle

The Heisenberg principle states – roughly speaking – that no information on a quan-
tum system can be obtained without changing its state. In this form, the statement
is not so interesting: If we realize that the state of the system expresses the expec-
tations of its observables, given the information we have on it, it is no wonder that
this state changes once we gain information!

A more precise formulation is the following:

If we extract information from a system whose algebra A is a factor (i.e., A ∩ A′ = C1),
and if we throw away (disregard) this information, then still it cannot be avoided that some
initial states are altered.

Let us work toward a mathematical formulation: A measurement is an operation
performed on a physical system which results in the extraction of information from
that system, while possibly changing its state. So a measurement is an operation

M∗ : A∗ → A∗ ⊗ B∗ , (131)

where A describes the physical system and B the output part of a measurement appa-
ratus which we couple to it. A∗ consists of states and B∗ of probability distributions
on the outcomes. So B will be commutative, but we do not need this property here.
Now suppose that no initial state is altered by the measurement:

(id ⊗ Tr )M∗(ρ) = ρ ∀ ρ ∈ A∗ . (132)

Suppose also that A is a factor. We claim that no information can be obtained on ρ:

(Tr ⊗ id )M∗(ρ) = ϑ , (133)

where ϑ does not depend on ρ. Figure 7 symbolically expresses this fact.
We again formulate and prove the theorem in the contravariant picture:



Quantum Probability and Quantum Information Theory 101

Fig. 7 The Heisenberg
principle M*

M*

=

=

Theorem 8 (Heisenberg’s principle) Let M be an operation A⊗ B → A such that
for all A ∈ A,

M(A ⊗ 1) = A , (134)

then

M(1⊗ B) ∈ A ∩A′ . (135)

In particular, if A is a factor, then for some fixed state ϑ on B

M(1⊗ B) = ϑ(B) · 1A. (136)

We note that (136) implies (133), since for all ρ on A and all B ∈ B

(
(Tr ⊗ id )M∗ρ

)
(B) = ρ(

M(1⊗ B)
) = ρ(

ϑ(B)1A
) = ϑ(B) . (137)

Proof As in the proof of the “no cloning” theorem we have by the multiplication
theorem for all A ∈ A, B ∈ B

M(1⊗ B) · A = M(1⊗ B)M(A ⊗ 1) = M(A ⊗ B) . (138)

But also,

A · M(1⊗ B) = M(A ⊗ 1)M(1⊗ B) = M(A ⊗ B) . (139)

So M(1 ⊗ B) lies in the center of A. If A is a factor, then B �→ M(1 ⊗ B) is an
operation from B to C · 1A, i.e., a state on B times 1A. �
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6.4 Random Variables and von Neumann Measurements

Following the suggestion made in Sect. 4.2 (in particular case 2), we define
a random variable to be a *-homomorphism from one algebra B to a (larger)
algebra A:

A j←−B . (140)

In the covariant (“Schrödinger”) picture this describes the operation j∗ of restriction
to the subsystem B:

A∗ j∗−→B∗ . (141)

An important case is when B = C(Ω) for some finite setΩ; then j is to be viewed as
anΩ-valued random variable. LetΩ = {x1, . . . , xn}. Then j (1{xi }) is a projection,
Pi say, in A, with the properties that

n∑

i=1

Pi =
n∑

i=1

j (1{xi }) = j (1B) = 1A (142)

and for i �= j ,

Pi Pk = j (1{xi }) j (1{xk }) = j (1{xi } · 1{xk }) = 0 . (143)

We interpret Pi as the event “the random variable described by j takes the value xi .”
Note that j can be written as

j ( f ) = j

(
n∑

i=1

f (xi )1{xi }

)
=

n∑

i=1

f (xi )Pi . (144)

In particular, if Ω ⊂ R, then j defines a Hermitian operator

j (id ) =
n∑

i=1

xi Pi =: X , (145)

which completely determines j .

Proposition 8 Let A be a finite-dimensional *-algebra with unit. Then there is a
one-to-one correspondence between injective *-homomorphisms j : C(Ω) → A
for some finite Ω ⊂ R and self-adjoint operators X ∈ A, given by

j (id ) = X . (146)
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Proof If j is a *-homomorphism C({x1, . . . , xn})→ A with x1, . . . , xn real, then

X := j (id ) =
n∑

i=1

xi j (1{xi }) =:
n∑

i=1

xi Pi (147)

is a Hermitian element of A. Conversely, if X ∈ A is Hermitian, then let x1, . . . , xn

be its eigenvalues. Let p : C → C denote the polynomial

p(x) := (x − x1) · · · (x − xn) (148)

and let, for i = 1, . . . , n, the (Lagrange interpolation) polynomial pi be given by

pi (x) := p(x)

(x − xi )p(xi )
. (149)

Then pi (xk) = δik pk , so we have on the spectrum sp(X) = {x1, . . . , xn} of X

n∑

i=1

pi = 1 and pi · pk = δik pk . (150)

It follows that the projections Pi := pi (X), with i = 1, . . . , n, lie in the algebra A
and satisfy

n∑

i=1

Pi = 1 and Pi Pk = δik Pk . (151)

Hence, if we define

j ( f ) :=
n∑

i=1

f (xi )Pi , (152)

then j is a *-homomorphism with the property that j (id ) = X . Clearly, different
X ’s correspond to different j’s. �

6.5 The Joint Measurement Apparatus

Let X and Y be self-adjoint elements of the *-algebra A. We consider X and Y as
random variables taking values in the spectra sp(X) and sp(Y ).

By a joint measurement M∗ of these random variables we mean an operation that
takes a state ρ on A as input and yields a probability distribution π on sp(X)×sp(Y )
as output, in such a way that for all functions f on sp(X) and g on sp(Y )
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ρ( f (X)) =
∑

x∈sp(X)

∑

y∈sp(Y )

π(x, y) f (x) , (153)

ρ(g(Y )) =
∑

x∈sp(X)

∑

y∈sp(Y )

π(x, y)g(y) . (154)

A contravariant formulation of these requirements is

M( f ⊗ 1) = f (X) , (155)

M(1⊗ g) = g(Y ) . (156)

Theorem 9 If two random variables X and Y allow a joint measurement operation,
then they commute.

Proof Let us denote by x the identity function on sp(X) and by y on sp(Y ). We
apply the multiplication theorem on the measurement operation M , which is sup-
posed to exist. Since

M
(
(x ⊗ 1)† (x ⊗ 1)

) = M(x2 ⊗ 1) = X2 = M(x ⊗ 1)† M(x ⊗ 1) , (157)

we have

M
(
(x ⊗ 1)† (1⊗ y)

) = M(x ⊗ 1)† M(1⊗ y) = XY (158)

and

M
(
(1⊗ y)† (x ⊗ 1)

) = M(1⊗ y)† M(x ⊗ 1) = Y X . (159)

As (x ⊗ 1)† (1⊗ y) = x ⊗ y = (1⊗ y)† (x ⊗ 1), we have XY = Y X. (160)

�

7 Quantum Novelties

In the previous section we saw certain strange limitations that quantum operations
are subject to. Let us now look at the other side of the coin: some surprising possibil-
ities. We leave treatment of the really sensational features to other contributions in
this volume, such as very fast computation and secure cryptography. Here we shall
treat “teleportation” of quantum states and “dense coding.”

7.1 Teleportation of Quantum States

Suppose that Alice wishes to send to Bob the quantum state ρ of a qubit over a
(classical) telephone line.
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Fig. 8 Teleportation based
on shared entanglement

=
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In Sect. 6.2 we have seen that, without any further tools, this is impossible. If Alice
performed measurements on the qubit and told the results to Bob over the telephone,
these would not enable Bob to reconstruct the state ρ. However, suppose that Alice
and Bob have been together in the past, and that at that time they have created an
entangled pair of qubits, as introduced in Sect. 2.3, each taking one qubit with them.
It was discovered in 1993 by Bennett, Wootters, Peres, and others that by making
use of this shared entanglement, Alice is indeed able to transfer her qubit to Bob.
Of course, she cannot avoid destroying the original state ρ in the process; otherwise
Alice and Bob would have copied the state ρ, which is impossible by Theorem 6.1
(“no cloning”). It is for this reason that the procedure is called “teleportation.”

We illustrate the procedure in Fig. 8.
Here ω is the fully entangled state X �→ 〈Ω, XΩ〉 on M2⊗M2 (see the proof of

Theorem 3, Stinespring’s theorem).
The procedure runs as follows. Alice possesses two qubits, one from the entan-

gled pair and one which she wishes to send to Bob. She performs a von Neumann
measurement on these two qubits along the four Bell projections

Q00 := 1

2

⎛

⎜⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞

⎟⎟⎠ , Q01 := 1

2

⎛

⎜⎜⎝

1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

⎞

⎟⎟⎠ , (161)

Q10 := 1

2

⎛

⎜⎜⎝

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞

⎟⎟⎠ , Q11 := 1

2

⎛

⎜⎜⎝

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎞

⎟⎟⎠ . (162)

The operation performed by Alice has the contravariant description:

A : C2 ⊗ C2 → M2 ⊗ M2 : A(ei ⊗ e j ) := Qi j . (163)

The two bits Alice obtains in this way – (i, j) say – she sends to Bob over the tele-
phone. He then takes his own qubit from the entangled pair, and if j = 1 performs
the “phase flip” operation

Z :
(
ρ00 ρ01
ρ10 ρ11

)
�→

(
ρ00 −ρ01
−ρ10 ρ11

)
=

(
1 0
0 −1

) (
ρ00 ρ01
ρ10 ρ11

) (
1 0
0 −1

)
(164)
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and if j = 0 he does nothing. Then, if i = 1 he performs the “quantum not”
operation

X :
(
ρ00 ρ01
ρ10 ρ11

)
�→

(
ρ11 ρ10
ρ01 ρ00

)
=

(
0 1
1 0

) (
ρ00 ρ01
ρ10 ρ11

) (
0 1
1 0

)
(165)

and if i = 0 he does nothing. In the Heisenberg picture, the result of Bob’s actions
is the operation

B : M2 → C2 ⊗ C2 ⊗ M2 : M �→ M ⊕ σ3 Mσ3 ⊕ σ1 Mσ1 ⊕ σ2 Mσ2 , (166)

where σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, and σ3 :=

(
1 0
0 −1

)
are Pauli’s spin matrices.

Bob ends up with a qubit in exactly the same state as Alice wanted to send.
We formulate this result in the Heisenberg picture.

Proposition 9 The state ω and the operations A and B described above satisfy

(id M2 ⊗ ω) ◦ (A ⊗ id M2) ◦ B = id M2 . (167)

Proof We just calculate for M ∈ M2:

M
B�−→M ⊕ σ3 Mσ3 ⊕ σ1 Mσ1 ⊕ σ2 Mσ2

A⊗id�−→(Q00 ⊗ M)+ (Q01 ⊗ σ3 Mσ3)+ (Q10 ⊗ σ1 Mσ1)+ (Q11 ⊗ σ2 Mσ2)

= 1

2

⎛

⎜⎜⎝

M + σ3 Mσ3 0 0 M − σ3 Mσ3
0 σ1 Mσ1 + σ2 Mσ2 σ1 Mσ1 − σ2 Mσ2 0
0 σ1 Mσ1 − σ2 Mσ2 σ1 Mσ1 + σ2 Mσ2 0

M − σ3 Mσ3 0 0 M + σ3 Mσ3

⎞

⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m00 0 0 0 | 0 0 0 m01
0 m11 0 0 | 0 0 m10 0
0 0 m11 0 | 0 m01 0 0
0 0 0 m00 | m01 0 0 0
− − − − | − − − −
0 0 0 m10 | m11 0 0 0
0 0 m01 0 | 0 m00 0 0
0 m01 0 0 | 0 0 m00 0

m10 0 0 0 | 0 0 0 m11

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

id⊗ω�−→
(

m00 m01
m10 m11

)
= M .

(168)

�
Teleportation has been carried out successfully in the lab by Zeilinger et al. in
Vienna in 1997 using polarized photons, and by other experimenters using different
techniques later.
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For the sake of such experiments explicit operations have been developed that
form the “building blocks” of the diversity of quantum operations needed. For
example the operation performed by Alice to prepare the teleportation of a qubit
can be decomposed into an interaction and a measurement. Let j be the ordinary
measurement operation of a qubit:

j : C2 → M2 : ( f0, f1) �→
(

f0 0
0 f1

)
. (169)

Let H denote the Hadamard gate, which acts on states or observables by multi-

plication on the left and on the right by the Hadamard matrix 1√
2

(
1 1
1 −1

)
, and

let C denote the CNOT gate (compare chapter “Bipartite Quantum Entanglement”,

Sect. 2) with matrix

⎛

⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎟⎟⎠. The operation C performs a NOT operation on the

first qubit provided that the second is a 1, which is as shown in Fig. 9.
Check that, using the above building blocks, the procedure of quantum telepor-

tation can be charted as in Fig. 10.

Fig. 9 Conventional signs
used for the C and j
operations

=

=

C*

j*

Fig. 10 More detailed
scheme of teleportation

Alice

Bob

XZ

H

ω

7.2 Dense Coding

We have seen that Alice can “teleport” a qubit using two classical bits, given a
pre-entangled qubit pair. A kind of converse is also possible: Bob can communicate
two classical bits to Alice by sending her a single qubit, again given a shared pre-
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Fig. 11 Superdense coding:
two bits in a single photon

=

B*

A*ω

entangled qubit pair (Fig. 11). (We have interchanged the roles of Alice and Bob
here because it turns out that in that case they can continue using exactly the same
equipment as they used for teleportation!)

Proposition 10 Taking ω, A, and B as in Proposition 9, we have

(id C2⊗C2 ⊗ ω) ◦ (B ⊗ id M2) ◦ A = id C2⊗C2 . (170)

We leave the proof as an exercise.
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Bipartite Quantum Entanglement

F. Benatti

1 Introduction

It was rather soon realized that quantum mechanics permitted the existence of
states exhibiting statistical correlations that are unexplainable by classical prob-
ability theory (see chapter “Classical Information Theory”) and conflict with a
natural notion of locality. These properties led Einstein, Podolski, and Rosen to
argue that quantum mechanics could not be a complete description of reality (see
chapter “Quantum Probability and Quantum Information Theory”, Sect. 2 and
chapter “Photonic Realization of Quantum Information Protocols”, Sect. 2.1 for
more details) [14]. Schrödinger referred to the peculiar features of such quantum
states as verschränkung, that is entanglement [31].

Quantum entanglement remained for years more an epistemological riddle than
anything physical until Bell’s inequalities [3] turned it into an experimentally acces-
sible phenomenon; a real breakthrough occurred when quantum entanglement was
recognized to provide unexplored possibilities from an informational viewpoint, that
is, as a resource to be used in quantum cryptography (chapter “Quantum Cryptogra-
phy”), information transmission (chapter “Quantum Entropy and Information”), and
quantum computation (chapter “Physical Realization of Quantum Information”).
The sudden change of perspective prompted a huge amount of studies that have
been focussing on entanglement detection, quantification, and generation both theo-
retically and experimentally (see chapters “Photonic Realization of Quantum Infor-
mation Protocols” and “Physical Realization of Quantum Information”), thus giving
birth to a whole new theory [25, 13, 20].

This chapter will mainly be dealing with (bipartite) entanglement between pairs
of finite-level systems; in particular, it will focus upon tools for entanglement detec-
tion as the von Neumann entropy and the quantum relative entropy [27] (chapter
“Hilbert Space Methods for Quantum Mechanics”) and positive and completely
positive maps [13].
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A brief introductory comment on these two classes of linear maps is due at this
point. Completely positive maps have been discussed in detail in chapters “Hilbert
Space Methods for Quantum Mechanics” and “Quantum Probability and Quantum
Information Theory” under the captions state transformations, respectively, quan-
tum operations: Mathematically, completely positive maps describe how quantum
states (or in the dual picture, quantum observables) transform under any possi-
ble physical processes such as the reversible time evolution that a system under-
goes because of its Hamiltonian dynamics or the irreversible wave-packet reduction
mechanism resulting from a measurement process, or the reduced dynamics of open
quantum systems, that is, of subsystems immersed in their environment and weakly
interacting with it.

Whatever the actual transformation, physical states change into physical states;
since quantum states (of finite quantum systems) are generically described by
density matrices, their corresponding changes in time must then be described by
maps sending density matrices into density matrices. As seen in chapter “Hilbert
Space Methods for Quantum Mechanics”, density matrices are positive operators of
trace 1, namely, their eigenvalues are probabilities and the whole statistical interpre-
tation of quantum mechanics is based on this fact. Consequently, for the consistence
of the theory, physical processes must be described by maps that preserve the posi-
tivity (of the spectrum) of the density matrices on which they act: linear maps with
this property are called positive.

The standard quantum time evolution generated by the Schrödinger equation
and the description of the effects of a measurement process by means of POVMs
are instances of positive maps. As they are directly written in the so-called Kraus
form (see chapter “Hilbert Space Methods for Quantum Mechanics”, Sect. 2.4 and
chapter “Quantum Probability and Quantum Information Theory”, Sect. 2.4), these
maps enjoy a stronger kind of positivity, called complete positivity. We briefly
remind the reader what it amounts to. Suppose the states ρS of a system S under-
going a certain physical process transform according to a linear map ρ �→ E[ρ];
if E is positive, starting with a state ρ, E[ρ] also is a positive operator of trace 1,
namely, a new state of the system S. However, one may always imagine to couple
S to another, completely insert, finite-level system of arbitrary dimensionality, that
is, to an ancilla A; then, the physical process affecting S only, but now a subsystem
of the compound system S + A, would be mathematically described by the linear
positive map E⊗ id, where the identity operation id means that nothing happens to
the (states of the) system A. Interestingly, despite E being positive, E ⊗ id is not
necessarily such: matrix transposition T on 2× 2 matrices has already been offered
(see chapter “Quantum Probability and Quantum Information Theory”, Sect. 5.2) as
a prototypical instance of a positive, but non-completely positive map as T⊗id2 fails
to be positive on the states of two two-level systems (qubits). In order to guarantee
the positivity of E ⊗ id on the states of the compound system S + A with A any
n-level system, E must be not only positive but also completely positive, a property
fully characterized by the Kraus representation (see chapter “Hilbert Space Methods
for Quantum Mechanics”, Sect. 2.4 and chapter “Quantum Probability and Quantum
Information Theory”, Sect. 5).
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2 Bipartite Entanglement

In the following, we shall deal with finite-level systems S: Their observables are
represented by Hermitian d × d matrices X = X† ∈ Md(C) acting on the Hilbert
space Cd and their pure and mixed states by density matrices ρ, namely, by positive
d × d matrices, ρ ≥ 0, of trace 1, Tr (ρ) = 1, forming a convex set, the space
of states of S, S(S). Its extremal points are the pure states and it is closed with
respect to the trace norm (see Exercise 1.1 and the discussion in chapter “Quantum
Probability and Quantum Information Theory”, Sect. 3.5).

In particular, we shall focus upon bipartite composite systems S = S1 + S2,
consisting of two d1,2-level parties S1,2 usually identified with two distant, spatially
well-separated quantum systems. The operators of S are matrices from the matrix-
algebra Md1d2(C) = Md1(C)⊗Md2(C) which is the tensor product of the two local
subalgebras Md1(C)⊗ 12 and 11 ⊗ Md2(C), whence the term non-local.

Definition 1 A state ρ ∈ S(S1 + S2) is called separable if and only if it can be
written as a linear convex combination of tensor products of density matrices

ρ =
∑

i j

λi j ρ
i
1 ⊗ ρ j

2 , λi j ≥ 0 ,
∑

i j

λi j = 1 , (1)

where ρi
1 ∈ S(S1) and ρ j

2 ∈ S(S2). States ρ ∈ S(S1 + S2) which cannot be written
as in (1) are called entangled or non-separable.

Remark 1 Generic, separable mixed states can always be written as linear convex
combinations of tensor products of pure states (just use the spectral decompositions
of the density matrices appearing in (1)): They carry statistical correlations, but these
are of classical nature and are related to how the pure states are mixed together.
Indeed, a density matrix of the form

ρ =
∑

i, j

λi j |Ψ i
1 〉〈Ψ i

1 | ⊗ |Ψ j
2 〉〈Ψ j

2 | , λi j ≥ 0 ,
∑

i j

λi j = 1, (2)

describes a statiscal ensemble that can always be thought of being assembled by
collecting systems from a source which, in N uses, emits Ni j quantum systems

described by state vectors |Ψ i
1 〉 ⊗ |Ψ j

2 〉 in such a way that Ni j/N → λi j with
increasing N . The weights thus reflect the statistics of the source, viewed as a classi-
cal stochastic variable (see chapters “Classical Information Theory” and “Quantum
Entropy and Information”).

Notice that the local character of separable states cannot be modified by local
actions of the form E1 ⊗ E2 where E1,2 are completely positive, trace-preserving
maps acting on the spaces of states S(S1,2). This means that in order to change the
local character of a separable state into a non-local one, it is necessary to operate a
non-local action (see Example 1.3).
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Pure separable states correspond to projections onto state vectors of the form
|Ψ 〉 = |Ψ1〉 ⊗ |Ψ2〉 for some Ψ1,2 ∈ Cd1,2 , otherwise they are entangled. A generic
state vector reads

|Ψ 〉 =
d1,2∑

i, j=1

ci j |ψ i
1〉 ⊗ |ψ j

2 〉 (3)

with respect to two orthonormal bases {|ψ i
1〉}d1

i=1 in Cd1 , respectively, {|ψ i
2〉}d2

i=1 in
Cd2 . At first sight, it is not at all obvious whether |Ψ 〉 can or cannot be written in
the separable tensor product form; in this case, the so-called Schmidt decomposition
easily settles the issue [13].

Lemma 1 Suppose d1 ≤ d2; given |Ψ 〉 ∈ Cd1 ⊗ Cd2 , one can find orthonormal
bases {|φi

1〉}d1
i=1, respectively, {|φi

2〉}d2
i=1 yielding a diagonal decomposition

|Ψ 〉 =
d1∑

i=1

√
λi |φi

1〉 ⊗ |φi
2〉 (4)

with non-negative Schmidt coefficients
√
λi .

Proof Consider the marginal density matrix (see chapter “Hilbert Space Meth-
ods for Quantum Mechanics”, Sect. 2.3) ρ1 = Tr 2(|Ψ 〉〈Ψ |) obtained by trac-
ing with respect to any orthonormal basis in Cd2 . Using as orthonormal basis
{|ψ i

1〉}d1
i=1 in (3) the eigenvectors |φi

1〉 of ρ1, write |Ψ 〉 = ∑d1
i=1 |φi

1〉⊗ |χ i
2〉, with the

new vectors |χ i
2〉 =

∑d2
j=1 ci j |ψ j

2 〉 neither normalized nor orthogonal, in general.

Then, |Ψ 〉〈Ψ | = ∑d1
i, j=1 |φi

1〉〈φ j
1 | ⊗ |χ i

2〉〈χ j
2 | yields ρ1 = ∑d1

i=1 λi |φi
1〉〈φi

1| =∑d1
i, j=1 |φi

1〉〈φ j
1 | 〈χ j

2 |χ i
2〉, whence 〈χ j

2 |χ i
2〉 = δi j λi . The result follows by setting

|χ i
2〉 =

√
λi |φi

2〉. �

Being determined by the spectrum of the marginal density matrices (see
Exercise 1.2), the number of non-zero Schmidt coefficients of a bipartite state vector
is a representation-independent quantity. One thus has

Corollary 1 A state |Ψ 〉 ∈ Cd1 ⊗Cd2 is separable if and only if its marginal states
are pure.

Proof If |Ψ 〉 is separable, |Ψ 〉〈Ψ | = |Ψ1〉〈Ψ1|⊗ |Ψ2〉〈Ψ2| and ρ1 = |Ψ1〉〈Ψ1|. Vice
versa, if ρ1 is not a projection, it has more than one non-zero eigenvalue and, by the
Schmidt decomposition, |Ψ 〉 is not separable. �

The Schmidt decomposition provides a useful representation of the pure states
of a bipartite system; let us now consider a related tool, the so-called purification. It
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allows one to associate the mixed state of any quantum system with a pure state of a
larger composite system. It is a simple consequence of the Schmidt decomposition.1

Given a state ρS of a quantum system S, it is possible to introduce another system,
which we denote by A, and define a state vector |ΨS A〉 for the joint system, such that

ρS = Tr A

(
|ΨS A〉〈ΨS A|

)
. (5)

Just take the spectral decomposition ρS = ∑d
i=1 r i

S |r i
S〉〈r i

S|; let A be a copy of S,
that is, another d-level system and set

Cd ⊗ Cd � |ΨS A〉 =
d∑

i=1

√
r i

S |r i
S〉 ⊗ |r i

S〉 . (6)

The pure state |ΨS A〉 is referred to as the purification of ρS . It reduces to ρS when
we look at the system S alone (i.e., when we take a partial trace over the system
A). This is a purely mathematical technique which allows us to associate pure states
with mixed states. The jargon refers to A as an ancilla; it is a fictitious system that
one can always append to a given one and has no direct physical significance, but
is technically often and fruitfully employed (see chapters “Quantum Entropy and
Information”, “Quantum Cryptography”, and “Quantum Algorithms”).

Exercise 1

1. Show that the space of states of a finite-level system is convex and closed with
respect to the trace norm

‖X1 − X2‖1 = Tr
√
(X1 − X2)†(X1 − X2), X1,2 ∈ Md(C) . (7)

Show that pure state projections are the extremal elements of such a convex set,
namely, those that cannot be further decomposed into convex combinations of
other elements of the set.

2. Using the Schmidt decomposition, show that the two marginal density matrices
ρ1,2 associated with a pure state |Ψ 〉 ∈ C d1 ⊗ C d2 have the same eigenval-
ues with the same multiplicities, apart, possibly, for the 0 eigenvalue. Identify
the eigenvalue and relate the degeneracy of the null eigenvalue to the possible
difference d1 �= d2.

3. Well-known instances of entangled pure states are the Bell states [25] of two two-
level systems (two qubits); they form an orthonormal basis in C 4 (see chapters
“Hilbert Space Methods for Quantum Mechanics” and “Quantum Probability
and Quantum Information Theory”):

1 Purification is an instance of the GNS-representation (see [1, 10] and chapter “Quantum Proba-
bility and Quantum Information Theory”).
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|Ψ00〉 = |00〉 + |11〉√
2

, |Ψ01〉 = |01〉 + |10〉√
2

, (8)

|Ψ10〉 = |00〉 − |11〉√
2

, |Ψ11〉 = |01〉 − |10〉√
2

. (9)

Let C2 � |x〉, x = 0, 1, denote the basis vectors

(
1
0

)
, respectively

(
0
1

)
; these

correspond to qubits in the so-called computational basis. Consider the fol-
lowing steps: (1) start from an initial state |x, y〉 of two qubits, (2) operate a
Hadamard unitary rotation

1√
2

(
1 1
1 −1

)
⊗ 1 (10)

on the first qubit, and (3) a so-called Control-NOT unitary operation,

UCNOT := |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ σ1 =
(
1 0
0 σ1

)
, (11)

on both qubits. Show that as a result of the action of the two unitary operations,
one gets

|Ψxy〉 := 1√
2

1∑

i=0

(−1)i x |i, y ⊕ i〉 = |0, y〉 + (−1)x |1, y ⊕ 1〉√
2

(12)

(where ⊕ denotes binary summation) so that, by varying x, y ∈ {0, 1}, one
obtains the Bell basis.

2.1 Entanglement and Entropy

As seen in Remark 1, the correlations carried by separable mixed states (1) are
embodied in the weights λi j and are thus of classical nature. Instead, entangled
states carry correlations that are purely quantum mechanical; they indeed conflict
with what one expects from the classical behavior of the entropy as a measure of
uncertainty.

With reference to Sect. 1.2 in chapter “Classical Information Theory”, we shall
denote by h(X) the Shannon entropy of a classical stochastic variable X , by h(X,Y )
the joint entropy of two stochastic variables X and Y , and by h(X |Y ) the condi-
tional entropy of X with respect to Y . Let us consider the case when Y refers to
a whole classical system and X to a subsystem. Then, complete knowledge of Y
would correspond to complete knowledge of X and thus to no uncertainty about
the latter, h(X |Y ) = 0 or, from (13) in chapter “Classical Information Theory”,
h(X,Y ) = h(Y ). Consequently,

0 ≤ h(Y |X) = h(X,Y )− h(X) = h(Y )− h(X) (⇒ h(X) ≤ h(Y ) . (13)
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This means that the Shannon entropy of any global state of classical systems cannot
be smaller than the entropy of the reduced states of any of its constituent parts.

Consider instead a bipartite system consisting of two d-level systems in the
totally symmetric state

|Ψ (d)+ 〉 = 1√
d

d∑

i=1

|i, i〉 , (14)

where {|i〉 is any fixed orthonormal basis in Cd (this generalizes the two-qubit Bell
state |Ψ00〉 in (8)). By the partial trace of the corresponding projector (which we
shall refer to as totally symmetric projector)

P(d)+ := 1

d

d∑

i, j=1

|i〉〈 j | ⊗ |i〉〈 j | , (15)

one obtains the marginal density matrices

ρ1,2 = Tr (P(d)+ ) = 1

d

d∑

i=1

|i〉〈i | = 1

d
, (16)

namely the totally mixed state for both parties. As discussed in chapter “Hilbert
Space Methods for Quantum Mechanics”, Sect. 3.1, what replaces the Shannon
entropy h(X) of a stochastic variable is the von Neumann entropy S(ρ) of a density
matrix ρ, which amounts to the Shannon entropy of the spectrum of ρ:

S(ρ) = −Tr ρ log ρ = −
∑

i

ri log ri , (17)

where the spectralization ρ = ∑
i ri |ri 〉〈ri |, ri ≥ 0,

∑
i ri = 1, 〈ri |r j 〉 = δi j , has

been used.
Therefore, the bipartite state P(d)+ := |Ψ (d)+ 〉〈Ψ (d)+ | of S = S1 + S2 has minimal

entropy, while that of its constituent parties is maximal:

0 = S(P(d)+ ) ≤ S(ρ1,2) = log d . (18)

In other terms, taking the von Neumann entropy of a quantum state as a measure
of its information content, the entangled, non-local, pure state P(d)+ of the whole
quantum system S = S1 + S2 is fully determined, whereas the states of the local
subsystems S1,2 are totally random. This fact is true of any pure bipartite-entangled
states.

Corollary 2 A state vector |Ψ 〉 ∈ Cd1 ⊗Cd2 is entangled if and only if its marginal
density matrices have non-zero entropy.
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Proof By Corollary 1, |Ψ 〉 is separable if and only if ρ1,2 = Tr 2,1(|Ψ 〉〈Ψ |) are
projections which is true if and only if S(ρ1,2) = 0. �

As we shall see, the case of mixed entangled states is not as easy to deal with
as for pure entangled states: for instance, there are entangled mixed states that have
more entropy than their marginal states (see Example 1.3). However, the classical
behavior, namely that the entropy of a whole system cannot be smaller than that of
any of its parts, is true of all separable quantum states; in order to prove this fact,
we need to inspect in more detail the notion of von Neumann entropy and of quan-
tum relative entropy introduced in chapter “Hilbert Space Methods for Quantum
Mechanics”, Sect. 3.2.

Exercise 2

1. Entangled pure states such that the entropy of their marginal density matrices
is maximal are called maximally entangled (see Exercise 3.3). Show that, if
cosϑ �= ± sinϑ , then the two-qubit state

|ϑ〉 = cosϑ |01〉 + sinϑ |10〉 (19)

is not maximally entangled.
2. Consider the symmetric projector P(d)+ and show that it remains maximally

entangled under any local unitary transformation

P(d)+ �−→
d∑

i=1

U1 |i〉〈i |U †
1 ⊗ U2|i〉〈i |U †

2 , (20)

where U1,2U †
1,2 = U †

1,2 U1,2 = 1.
3. Show that the totally symmetric state vector (14) is such that

A ⊗ B |Ψ (d)+ 〉 = 1d ⊗ B AT |Ψ (d)+ 〉 = ABT ⊗ 1d |Ψ (d)+ 〉 , (21)

for all A, B ∈ Md(C), where T denotes transposition with respect to the
orthonormal basis {|i〉}di=1 and that

〈Ψ (d)+ | A ⊗ B |Ψ (d)+ 〉 = 1

d
Tr

(
ABT

)
= 1

d
Tr

(
AT B

)
. (22)

2.2 von Neumann Entropy and Quantum Relative Entropy

As in the classical case, the concept of entropy in the quantum case gives rise to
related notions, e.g., quantum analogues of the relative entropy, joint entropy, con-
ditional entropy, and mutual information (see chapter “Quantum Entropy and Infor-
mation”, Sect. 4). Many important properties of the von Neumann entropy follow
from those of the quantum relative entropy of two density matrices ρ1,2 (see chapter
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“Hilbert Space Methods for Quantum Mechanics”, Sect.3.1). We remind the reader
of its definition and of some of its salient properties

S(ρ1||ρ2) = Tr
(
ρ1(log ρ1 − log ρ2)

)
. (23)

It is the quantum analogue of the classical relative entropy D(p||q) between two
probability distributions p = {pi } and q = {qi }, defined as

D(p||q) =
∑

i

pi log
pi

qi
. (24)

Note that S(ρ1||ρ2) < ∞ if and only if supp ρ1 ⊆ supp ρ2, where supp ρ denotes
the support of the operator ρ, i.e., the subspace spanned by eigenvectors of ρ with
non-zero eigenvalues.

Some of the many important properties of the quantum relative entropy are listed
below:

1. Non-negativity

S(ρ1||ρ2) ≥ 0, (25)

with equality if and only if ρ1 = ρ2 (see Exercise 3.2).
2. Joint convexity: For pi ≥ 0,

∑
i pi = 1 and density matrices ρi

1,2,

S
(∑

i

piρ
i
1||

∑

i

piρ
i
2

)
≤

∑

i

pi S(ρi
1||ρi

2) . (26)

The above inequality implies that S(ρ1||ρ2) is convex in each of its arguments.
3. Monotonicity under CPT maps: A quantum operation (CPT map) can never

increase the relative entropy. For a completely positive, trace-preserving map
E (see [33] and chapter “Hilbert Space Methods for Quantum Mechanics”,
Sect. 3.2),

S
(
E[ρ1]||E[ρ2]

)
≤ S(ρ1||ρ2) . (27)

Remark 2 Property 1 suggests that the relative entropy can be used to measure the
distance between two density matrices [34]. Note, however, that the relative entropy
is not technically a metric, since it is not symmetric and does not satisfy the triangle
inequality.

One important class of inequalities relates the entropies of subsystems to that
of a composite system. Let HAB = HA ⊗ HB and HABC = HA ⊗ HB ⊗ HC be
the Hilbert spaces of a bipartite system and a tripartite system; ρAB = Tr CρABC,
ρBC = Tr AρABC and ρB = Tr ACρABC will denote the marginal density matrices of
two and single parties which follow from partial tracing over the one or two Hilbert
spaces [27].
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1. Concavity of the entropy difference S(ρAB)− S(ρA):

S
(∑

i

piρ
i
AB

)
− S

(∑

i

piρ
i
A

)
≥

∑

i

pi

(
S(ρi

AB)− S(ρi
A)

)
, (28)

where pi ≥ 0 and
∑

i pi = 1 are weights and ρi
AB , ρi

A are two- and single-party
density matrices. A similar inequality holds exchanging A and B.

2. Strong subadditivity (SSA): For any state ρABC of a tripartite system

S(ρABC)+ S(ρB) ≤ S(ρAB) + S(ρBC ) . (29)

Similar inequalities hold by cyclically permuting A �→ B �→ C . This is one of
the most important and powerful results of quantum information theory. (It was
proved in [23], for more recent proofs see [26, 29].)

3. Subadditivity:

S(ρAB) ≤ S(ρA)+ S(ρB) , (30)

where the equality holds if and only if the subsystems A and B are uncorrelated,
i.e., ρAB = ρA⊗ρB . Note the analogy between (30) and the property h(X,Y ) ≤
h(X)+ h(Y ) of the Shannon entropy.

4. Triangle inequality (or Araki–Lieb inequality): For a bipartite system AB in a
state ρAB , one has

S(ρAB) ≥
∣∣∣S(ρA)− S(ρB)

∣∣∣ . (31)

The proof of concavity (28) follows from joint convexity (26): let ρi
1 = ρi

AB and
ρi

2 = ρi
A ⊗ 1/dB , where dB is the dimension of HB , 1/dB is the totally mixed

state of the system B and ρi
A = Tr Bρ

i
AB . Then, with ρAB = ∑

i piρ
i
AB and ρA =∑

i piρ
i
A,

S
(
ρAB ||ρA ⊗ 1/dB

)
= −S(ρAB)− Tr

(
ρAB log ρA

)
+ log dB

= −S(ρAB)+ S(ρA)+ log dB (32)

≤
∑

i

pi S
(
ρi

AB ||ρi
A ⊗ 1/dB

)

=
∑

i

pi

(
−S(ρi

AB)− Tr (ρi
AB log ρi

A)+ log dB

)

= −
∑

i

pi

(
S(ρi

AB)− S(ρi
A)

)
+ log dB . (33)

Thus, the result follows from (32) and (33).
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The proof of inequalities (30) and (31) uses strong subadditivity and the purifica-
tion technique. As follows: given ρAB acting in HAB , by adding a suitable ancilla,
one purifies it into a pure state projection PABC on a Hilbert space HABC. Then, while
S(ρABC) = S(PABC) = 0, the von Neumann entropies of any two subsystems equal
that of the remaining one. Indeed, from the Schmidt decomposition in Lemma 1
one knows that the non-zero eigenvalues of, say, ρAC and ρB are the same and the
entropy is determined completely by these eigenvalues. Then, (29) and its cyclic
permutations yield

S(ρAB) = S(ρC ) ≤ S(ρAC )+ S(ρBC ) = S(ρB)+ S(ρA) ,

S(ρAC ) = S(ρB) ≤ S(ρAB)+ S(ρBC ) = S(ρC )+ S(ρA) ,

S(ρBC ) = S(ρA) ≤ S(ρAC )+ S(ρAB) = S(ρB)+ S(ρC ) .

(34)

The first inequality is (30), while the remaining two obtain (31).

Corollary 3 All separable bipartite states ρAB have larger entropy than their con-
stituent parties: S(ρAB) ≥ max{S(ρA), S(ρB)}.

Proof Consider a separable state ρAB =
∑

i j
λi j ρ

i
A ⊗ ρ j

B ; its marginal density

matrices are ρA = ∑
i λ

i
Aρ

i
A and ρB = ∑

j λ
j
Bρ

j
B where λi

A :=
∑

j λi j and λ j
B :=∑

i λi j . Then, by applying the equality in (30), the positivity of the von Neumann
entropy yields

S(ρAB)− S(ρA) ≥
∑

i j

λi j

(
S

(
ρi

A ⊗ ρ j
B

)
− S(ρi

A)
)
=

∑

i j

λi j S(ρ j
B) ≥ 0 , (35)

and similarly by exchanging A with B. �

Exercise 3

1. Show that S(ρ) ≥ 0 and that the equality holds if and only if ρ is a pure state
density matrix.

2. Show that, if U ∈ Md(C) is a unitary operator, then S(U †ρU ) = S(ρ).
Hint: S(ρ) depends only on the eigenvalues of ρ.

3. Let ρ1 = ρ and ρ2 = 1/d, where 1 is the identity operator acting on the Hilbert
space H, and show that

S(ρ1||ρ2) ≥ 0 ⇒ S(ρ) ≤ log d , (36)

with the equality holding if and only if ρ = 1/d, the completely mixed state.
4. Using the concavity of the function s(x) := −x log x, the spectral decomposi-

tions of ρi and ρ := ∑r
i=1 piρi and the inequality

x(log x − log y) ≥ x − y ∀0 ≤ x, y ≤ 1 , (37)
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prove that the quantum relative entropy S(ρ1||ρ2) of two density matrices ρ1 and
ρ2 satisfies S(ρ1||ρ2) ≥ 0 with equality if and only if ρ1 = ρ2.

5. By means of the concavity of the function η(x) = −x log x for 0 < x ≤ 1, η(0) =
0, give another proof that the von Neumann entropy is a concave function of its

inputs, i.e., given probabilities pi ≥ 0,
∑r

i=1
pi = 1, and corresponding density

operators ρi (see Theorem 9 in chapter “Hilbert Space Methods for Quantum
Mechanics”)

S
( r∑

i=1

piρi

)
≥

r∑

i=1

pi S(ρi ). (38)

6. Let ρ = ∑
i piρi , where ρi are density matrices which have support on orthog-

onal subspaces. Then prove that

S
(∑

i

piρi

)
= H({pi })+

∑

i

pi S(ρi ) , (39)

where H({pi }) is the Shannon entropy of the probability distribution {pi }.
7. Consider an ensemble {p j , ρ j } of density matrices and let ρ := ∑

j p jρ j . Prove
that for any density matrix ω, the following identity holds:

∑

j

p j S(ρ j ||ω) =
∑

j

p j S(ρ j ||ρ)+ S(ρ||ω). (40)

This is known as Donald’s identity.

3 Entanglement Detection

According to Corollary 1, entangled bipartite pure states are detected by looking
at whether their marginal states are also one-dimensional projections. The task
becomes a lot more difficult in the case of bipartite mixed states; only in low
dimension the question has completely been solved, the main tools being provided
by the transposition operation, a linear map which is positive, but not completely
positive. We recall some definitions (see the Introduction to this chapter, chapter
“Hilbert Space Methods for Quantum Mechanics”, Sect. 2.4 and chapter “Quantum
Probability and Quantum Information Theory”, Sect. 5 and [1] for further details).

Definition 2 A linear map Λ : Md1(C) �→ Md2(C) is positive if it maps positive
matrices into positive matrices:

Md1(C) � X ≥ 0 �−→ Md2(C) � Λ[X ] ≥ 0 . (41)

A linear map Λ : Md1(C) �→ Md2(C) is completely positive if
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Λ⊗ idn : Md1(C)⊗ Mn(C) �→ Md1(C)⊗ Mn(C) (42)

is positive for all n.

Remark 3 The matrix algebra Md1(C)⊗Mn(C) describes a composite system S+A,
where S is typically a d1-level system of interest and A an n-level ancilla statistically
coupled to it via the states of S(S+ A). Linear maps of the formΛ⊗ idn , whereΛ :
Md1(C) �→ Md2(C), are called local for they affect only the system of interest while
leaving the ancilla unaffected. The maps Λ are usually defined on the observables
of a system; then, because of linearity, their action is transferred onto the space of
states S(d1) by duality; in the case of a positive map Λ : Md1(C) �→ Md2(C),

Tr
(
ρ Λ[X ]

)
= Tr

(
Λ∗[ρ] X

)
, (43)

where ρ ∈ S(d2) is a density matrix for a d2-level system, X ∈ Md1(C), and
Λ∗[ρ] ∈ S(d1) is a density matrix of the d1-level system: Λ∗ : S(Sd2) �→ S(Sd1).
As seen in chapter “Hilbert Space Methods for Quantum Mechanics”, Sect. 2.4 and
chapter “Quantum Probability and Quantum Information Theory”, Sect. 5 quan-
tum operations and quantum channels are usually assumed to preserve the trace of
the density matrices they act upon; by duality, one sees that trace-preserving maps,
Tr (Λ∗[ρ]) = 1, on the space of states correspond to identity-preserving (or unital)
maps, Λ[1d1 ] = 1d2 , on the algebra of operators.

By the theorems of Stinespring [31] and Kraus [22] (see chapters “Hilbert Space
Methods for Quantum Mechanics” and “Quantum Probability and Quantum Infor-
mation Theory”), completely positive mapsΛ : Md1(C) �→ Md2(C) are completely
characterized (see chapter “Quantum Probability and Quantum Information The-
ory”, Sect. 5.4); they are all and only those linear maps that can be cast in the
form

Λ[X ] =
∑

i

Li X L†
i , (44)

where X ∈ Md1(C) and Li : Cd1 �→ Cd2 are d1 × d2 matrices such that
∑

i L†
i Li

converges in the norm-topology of Md1(C) (
∑

i L†
i Li = 1 if Λ is unital).

By means of (44), one checks whether a linear map Λ : Md1(C) �→ Md2(C)
is completely positive by looking at the so-called Choi matrix constructed with the
symmetric projection (15) [1, 8]:

Md2(C)⊗ Md1(C) � CΛ := Λ⊗ idd1[P(d1)+ ] = 1

d1

d1∑

i, j=1

Λ[|i〉〈 j |] ⊗ |i〉〈 j | . (45)

The map Λ is completely determined by its actions on the d2
1 operators |i〉〈 j | ∈

Md1(C), the so-called matrix units; namely, one knows Λ if one knows the d2
1 × d2

2
complex values
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〈α|Λ[|i〉〈 j |] |β〉 , (46)

where {|α〉}d2
α=1 is an orthonormal basis in Cd2 .

Remark 4 This construction associates with a linear map Λ : Md1(C) �→ Md2(C) a
matrix CΛ ∈ Md2(C)⊗ Md1(C) whose entries are

〈α, i |CΛ |β, j〉 = 〈α|Λ[|i〉〈 j |] |β〉 . (47)

Vice versa, given a matrix C ∈ Md2(C)⊗Md1(C)with entries given by the left-hand
side of the previous relation, then its right-hand side associates with it a linear map
ΛC : Md1(C) �→ Md2(C).

Lemma 2 Λ : Md1(C) �→ Md2(C) is completely positive if and only if its Choi
matrix CΛ is positive.

Proof IfΛ : Md1(C) �→ Md2(C) is completely positive, thenΛ⊗idd1 is positive on
Md1(C)⊗Md1(C), whence CΛ ≥ 0. If CΛ ≥ 0, consider its spectral decomposition

CΛ =
d1d2∑

k=1

�k |Ψk〉〈Ψk | , (48)

where �k ≥ 0 and |Ψk〉 ∈ Cd2 ⊗ Cd1 . Using the completely symmetric state |Ψ (d1)+ 〉
in (14) and by expanding |Ψk〉 = ∑d2

α=1

∑d1
i=1 Ψαi |α〉 ⊗ |i〉 with respect to the

orthonormal bases {|i〉}d1
i=1 in Cd1 and {|α〉}d2

α=1 in Cd2 , one rewrites

|Ψk〉 = Vk ⊗ 1d1 |Ψ (d1)+ 〉 , (49)

by means of the d2 × d1 matrices Vk : Cd1 �→ Cd2 such that

Vk |i〉 = d1

d2∑

α=1

Ψαi |α〉 . (50)

Setting Lk = √
�k Vk , the Choi matrix can be recast as

CΛ =
d1d2∑

k=1

Lk ⊗ 1d1 P(d1)+ L†
k ⊗ 1d1 , (51)

where P(d1)+ projects onto |Ψ (d1)+ 〉.
Then, Λ and L : Md1(C) �→ Md2(C) defined by L[X ] = ∑d1d2

k=1 Lk X L†
k have

the same elements (46) and thus coincide, whenceΛ can be written in the form (44)
and is thus completely positive. �
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Though positive maps still lack a full characterization like that of completely
positive maps, the Choi matrix allows one to sort them out as follows.

Lemma 3 A linear map Λ : Md1(C) �→ Md2(C) is positive if and only if the Choi
matrix CΛ is block-positive, that is, if and only if

〈φ ⊗ ψ |Λ⊗ idd1[P(d1)+ ] |φ ⊗ ψ〉 ≥ 0 (52)

for all φ ∈ Cd2 and ψ ∈ Cd1 .

Proof Using the explicit form of the symmetric projection P(d1)+ the inequality in
the statement for the Lemma reads

〈φ|Λ[|ψ∗〉〈ψ∗| |φ〉 ≥ 0 , (53)

where |ψ∗〉 is the conjugate of |ψ〉 with respect to the chosen orthonormal basis in
Cd1 . Then, the map Λ : Md1(C) �→ Md2(C) is positive as it preserves the positivity
of all projections |ψ〉〈ψ | ∈ Md1(C). Vice versa, if the Choi matrix CΛ is block-
positive, by means of (21) one rewrite

0 ≤ 〈φ ⊗ ψ∗|CΛ |φ ⊗ ψ∗〉 = 1

d1

d1∑

i, j=1

〈φ|Λ[|i〉〈 j |] |φ〉 〈ψ∗i |〉 〈 j |ψ∗〉

= 〈φ|Λ[|ψ〉〈ψ |] |φ〉 .
(54)

�
The Choi matrix CΛ results from the action of Λ ⊗ idd1 on the pure state P(d1)+

of the composite system consisting of two d1-level systems S; thence, the physical
meaning of the previous two lemmas is as follows. A completely positive map Λ :
Md1(C) �→ Md2(C) is identified by the fact that it maps the state P(d1)+ into another
state (after normalization) over the algebra Md2(C) ⊗ Md1(C), namely, the Choi
matrix CΛ ≥ 0. On the contrary, if Λ is only positive, but not completely positive,
Λ⊗ idd1 maps P(d1) outside the space of states. Such a “physical interpretation” can
be generalized to all bipartite states.

Suppose Λ : Md1(C) �→ Md2(C) is a positive map, then Λ ⊗ idn preserves the
positivity of all separable states of the composite system S+ A, A an n-level ancilla;
that is of all states of the form (1) where ρi

1 ∈ S(S) and ρ j
2 ∈ S(A). Indeed,

Λ⊗ idn[ρ] =
∑

i j

λi j Λ[ρi
1] ⊗ ρ j

2 ≥ 0 , (55)

for ρi, j
1,2 ≥ 0 as well as Λ[ρi

1] ≥ 0.
Therefore, if Λ : Md1(C) �→ Md1(C) is a positive map and ρ is a state of

a bipartite system S1 + S2, Si , i = 1, 2, a di -level system, and Λ ⊗ idd2 [ρ] is not
positive semi-definite, then ρ must be entangled. The positive mapΛwhich exposes
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the entanglement of ρ is called an entanglement witness [20, 13, 8]. Notice that, in
order to work as an entanglement witness, Λ must be positive, but not completely
positive.

WhenΛ is taken as the transposition,Λ = T : Md1(C) �→ Md1(C), the action of
T⊗ idd2 is called partial transposition and the previous observation is the content of

Lemma 4 (Peres criterion) [28] A state ρ ∈ S(d1d2) of a bipartite system S1 + S2
consisting of a d1- and a d2-level system S1 and S2 is entangled if it does not remain
positive under partial transposition:

T⊗ idd2 [ρ] � 0 (⇒ ρ entangled . (56)

Definition 3 The bipartite states of S1 + S2 which remain positive under partial
transposition T ⊗ idd2 are called PPT states and those which do not are known as
NPT states.

Notice that, while transposition depends on the chosen representation, that is
it needs an orthonormal basis to be performed, the spectrum of a matrix does not.
Therefore, it is enough to check whether a bipartite state is PPT or NPT with respect
to the most convenient orthonormal basis.

Example 1

1. The action of T ⊗ id : Md(C) ⊗ Md(C) �→ Md(C) ⊗ Md(C) turns the projec-
tion (15) into

T⊗ id[P(d)+ ] = 1√
d

d∑

i, j=1

| j〉〈i | ⊗ |i〉〈 j | =: 1

d
V , (57)

where V : Cd ⊗ Cd �→ Cd ⊗ Cd is the so-called flip operator. Indeed,

V |ψ ⊗ ϕ〉 = |ϕ ⊗ ψ〉 ∀ψ, ϕ ∈ Cd . (58)

Since V = V † and V 2 = 1, V has eigenvalues 1 and−1. Therefore, T⊗id[P(d)+ ]
is NPT and P(d)+ entangled. Since P(d)+ is a pure state, this is not a surprise since

it is maximally entangled (Tr 2(P
(d)
+ ) = 1/d). More interesting is the following

example.
2. Consider the family of states, called isotropic, of the form [19]

ρF = α1d2 + β P(d)+ . (59)

Positivity, ρF ≥ 0, and normalization, Tr (ρF ) = 1, yield

α ≥ 0 , α d2 + β = 1 , 0 ≤ F := Tr (ρF P(d)+ ) = α + β ≤ 1 . (60)
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Isotropic states are thus mixtures of the totally mixed state 1/d2 and the totally
symmetric state (14),

ρF = d2(1− F)

d2 − 1

1d2

d2
+ d2 F − 1

d2 − 1
P(d)+ . (61)

Since 〈ψ ⊗ φ| P(d)+ |ψ ⊗ φ〉 = |〈ψ |φ∗〉|2, where ψ∗ is the vector in Cd with
complex conjugate components with respect to ψ , if ρF is separable, then

F = Tr (ρF P(d)+ ) = 1

d

∑

i j

μi j |〈ψ1
i |(φ2

j )
∗〉|2 ≤ 1

d
. (62)

The condition 0 ≤ F ≤ 1/d is necessary and also sufficient for separability.
The reason is that isotropic states are all and only those d2× d2 density matrices
which commute with all local unitaries of the form U ⊗ U∗, where U is any
unitary matrix in Md(C) and U∗ denotes its complex conjugate (not its adjoint).
Moreover, since (U ⊗U∗) P(d)+ (U †⊗U T) = P(d)+ , any isotropic ρF arises from
a twirling of the form

ρF =
∫

U
dU (U ⊗U∗) ρ (U † ⊗U T) , (63)

where U T denotes the transposition of U and ρ is such that Tr (ρ P(d)+ ) = F .
If Fd ≤ 1 and ρ = |ψ〉〈ψ | ⊗ |φ〉〈φ|, with |φ〉 = √

d F |ψ〉 + √
1− d F |ψ⊥〉,

then one can show that ρF can be obtained by twirling a separable state and is
thus itself separable. The above necessary and sufficient conditions for separabil-
ity coincides with the isotropic states being positive under partial transposition.
Indeed,

T⊗ idd [ρF ] = 1− F

d2 − 1
1d2 + d2 F − 1

d(d2 − 1)
V (64)

has positive eigenvalues (d F + 1)/(d2 + d) ≥ 0 and (1− d F)/(d2 − d) if and
only if 0 ≤ F ≤ 1/d.

3. With reference to Corollary 3, consider the case of two qubits and set d = 2 in
the previous example. Then, if F > 1/2 the isotropic state

ρF = (1− F)

3
14 + 4F − 1

3
P(2)+ (65)

is entangled. However, Fig. 1 shows that some of them have von Neumann
entropy,

S(ρF ) = −(1− F) log
1− F

3
− F log F , (66)

larger than that of their reduced density matrices TrA,BρF = 1/2.
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Fig. 1 S(ρF )− S(ρA,B =
S(ρF )− log 2
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4. This chapter is entirely devoted to bipartite-entangled states; a flavor of the intri-
cacies of multipartite entanglement [20] can be conveyed by means of the GHZ
states of three qubits that, with respect to the standard basis, read

|G H Z〉 = |000〉 + |111〉√
2

. (67)

Because of the symmetry there is no restriction in distinguishing between one of
the three qubits and the other two. Partial transposition with respect to the third
one reveals that there is entanglement between the latter and the first two qubits;
indeed,

Z := id12 ⊗ T3[|GHZ〉〈GHZ|] = 1

2

(
|000〉〈000| + |001〉〈110|

+ |110〉〈001| + |111〉〈111|
) (68)

is such that

Z = 1√
2

(
|001〉 − |110〉

)
= − 1√

2

(
|001〉 − |110〉

)
. (69)

Since Z has an eigenvalue –1, partial transposition shows there is entanglement
between the first two qubits and third one; however, the partial trace with respect
to the latter gives the separable totally mixed state:

Tr 3

(
|GHZ〉〈GHZ|

)
= 112

4
. (70)

Indeed, the trace operation is a state transformation with extreme decohering
effects. However, can localize the entanglement on the pair consisting of qubits
1 and 2 by projecting the third qubit onto a suitable state |ψ〉 = α|0〉 + β|1〉
(instead of tracing it out):
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〈ψ |GHZ〉〈GHZ|ψ〉 = 1

2

(
|α|2 |00〉〈00| + αβ∗ |00〉〈11|
+ α∗β |11〉〈00| + |β|2 |11〉〈11|

)
.

(71)

After normalization, the resulting state of qubits 1 and 2 may be entangled, for
instance, when α = β = 1/

√
2.

Lemma 4 provides a sufficient condition for a bipartite mixed state to be entan-
gled; using Lemmas 2 and 3, one derives a necessary, albeit non-constructive con-
dition[19].

Proposition 1 (Peres–Horodecki criterion) A bipartite state ρ of a composite sys-
tem S1 + S2 described by the algebra Md1(C) ⊗ Md2(C) is entangled if and only
there exists a positive map Λ : Md2(C) �→ Md1(C) such that, under the action of
the dual map, Λ∗ ⊗ idd2[ρ] � 0.

Proof As the space of states itself, also the set of separable states over Md1(C) ⊗
Md2(C), Ssep(S1 + S2), is convex and closed (with respect to the trace norm, see
Exercises 1.1 and 1.2). By the Hahn–Banach theorem, S(S1+S2) can thus be strictly
separated from any entangled state ρent by a hyperplane, that is, by a continuous
linear functional R : S(S1 + S2) �→ R and a real constant a such that R(ρent) <

a ≤ R(ρsep). As the trace norm, ‖X‖Tr = Tr
√

X† X , and the Hilbert–Schmidt

norm, ‖X‖HS =
√

Tr (X† X), define equivalent topologies in finite dimension, the
action of R can be represented by means of R = R† ∈ Md1(C)⊗ Md2(C) such that
R(ρ) = Tr (R ρ). Setting S := R′ − a1, it thus follows that ρ ∈ Md1(C)⊗ Md2(C)
is entangled if and only if there exists S ∈ Md1(C)⊗Md2(C) such that Tr (S ρ) < 0
while Tr (S ρsep) ≥ 0 for all ρsep ∈ Ssep(S1 + S2).

Furthermore, according to Remark 4, any such matrix is the Choi matrix of a
map ΛS : Md2(C) �→ Md1(C): S = ΛS ⊗ idd2 [P(d2)+ ]. Since S is block-positive
(see Lemma 3), Λ is a positive map. Let Λ∗S be its dual such that

Tr (S ρ) = Tr
(

P(d2)+ Λ∗S ⊗ idd2[ρ]
)

(72)

for all ρ ∈ S(S1+S2). If ρ is an entangled state, then Tr (S ρ) < 0 andΛ∗S⊗ idd2 [ρ]
cannot be positive definite. Vice versa, if Λ∗ ⊗ idd2 [ρ] ≥ 0 for all positive Λ :
Md2(C) �→ Md1(C), then ρ must belong to Ssep(S1 + S2). �

The previous argument states that a positive map Λ : Md2(C) �→ Md1(C) may
witness the entanglement of a state ρ ∈ S(S1 + S2) if Λ∗ ⊗ idd1 turns ρ into a
non-positive matrix. Therefore, Λ cannot be a CP map, otherwise Λ∗ ⊗ idd1 would
automatically be a positive map. Unlike for CP maps that are completely determined
by their form (44), positive, but not completely positive, maps still lack a complete
characterization. Consequently, given an entangled state ρ ∈ S(S1 + S2), the prob-
lem of seeking its entanglement witness is in general an extremely hard problem.

A particular class of positive maps is the following one.
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Definition 4 A map Λ : Md1(C) �→ Md2(C) is decomposable if it is positive and
Λ = Λ1 + Λ2 ◦ T, where Λ1,2 : Md1(C) �→ Md2(C) are CP maps and T is the
transposition on Md1(C) with respect to a fixed orthonormal basis in Cd1 .

Example 2 The so-called reduction map [18] " : Md(C) �→ Md(C),

"[X ] = Tr (X)1d − X , X ∈ Md(C) (73)

is decomposable. First, it is positive: in fact, if X ≥ 0, the spectrum of"[X ] consists
of eigenvalues

∑d
i=1,i �= j xi ≥ 0, 1 ≤ j ≤ d, where xi ≥ 0 are the eigenvalues of

X . Second, it is not completely positive: indeed, its Choi matrix

"⊗ idd [P(d)+ ] = 1d2

d
− P(d)+ (74)

has one negative eigenvalue 1/d − 1 and 1/d as a (d2 − 1)-degenerate positive
eigenvalue. However, "̃ = " ◦ T is completely positive, since

"̃⊗ idd [P(d)+ ] = 1

d

(
1d2 − V

)
, (75)

where V is the flip operator of Example 1.1, has eigenvalues 1/d (d(d − 1)/2-
degenerate) and 0 (d(d + 1)/2-degenerate). Since, as T ◦ T = id, it follows that "
can be decomposed as " = "̃ ◦ T.

Let (d1, d2) = (2, 2), (2, 3), (3, 2), then a theorem of Woronowicz [32, 36]
asserts that all positive maps Λ : Md1(C) �→ Md2(C) are decomposable. This fact
makes transposition an exhaustive entanglement witness in low dimension; in other
words, those states that remain positive under partial transposition are separable
and vice versa.

Corollary 4 If (d1, d2) = (2, 2), (2, 3), (3, 2), then, ρ ∈ S(S1 + S2) is entangled if
and only if T⊗ idd2[ρ] � 0.

Proof If ρ ∈ S(S1 + S2) is separable then T ⊗ idd2 [ρ] ≥ 0 from Lemma 4. Vice
versa, because of the assumed dimensions, Woronowicz theorem ensures that any
positive map is decomposable. Therefore, if T ⊗ idd2[ρ] ≥ 0, it turns out that, for
all positive Λ : Md1(C) �→ Md1(C),

Λ⊗ idd2[ρ] = Λ1 ⊗ idd1 [ρ] + Λ2 ⊗ idd2

[
T⊗ idd2 [ρ]

] ≥ 0 , (76)

as Λ1,2 are completely positive maps. �

Woronowicz theorem does not extend to higher dimension; there are instances of
non-decomposable positive maps already for d1 = d2 = 3 [17]; as a consequence
partial transposition is not an exhaustive entanglement witness in higher dimension.
In other words, all NPT states are entangled, but there can exist PPT-entangled
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states. The entanglement witnesses of PPT-entangled states ρ ∈ S(S1+ S2)must be
non-decomposable positive maps, otherwise as in the proof of the previous lemma,

Λ⊗ idd2[ρ] = Λ1 ⊗ idd2 [ρ] + Λ2 ⊗ idd2

[
T⊗ idd2 [ρ]

] ≥ 0 . (77)

We shall consider concrete examples of these states and their detection via non-
decomposable positive maps in Sect. 4.2; here we will just make the following
observation.

Lemma 5 Suppose ρ ∈ Md1(C)⊗ Md2(C) is a PPT state. If there exists a positive
map Λ : Md2(C) �→ Md1(C) such that

Fρ(Λ) = Tr
(
ρ Λ⊗ idd2 [P(d2)+ ]

)
< 0 , (78)

then, ρ is PPT entangled and Λ non-decomposable.

Proof If ρ were separable, then Fρ(Λ) ≥ 0 as Λ is a positive map (see the discus-
sion before Lemma 4). The same would be true if Λ were decomposable, since ρ is
assumed to be PPT. �

Example 3 No state vector |Ψ 〉 ∈ Cd1⊗Cd2 can be PPT entangled. Indeed, consider
the Schmidt decomposition of an entangled vector state

|Ψ 〉 =
d∑

j=1

√
λ j |ψ(1)j 〉 ⊗ |ψ(2)j 〉 , (79)

where d := min{d1, d2}, {|ψ(1,2)j 〉}dj=1 are orthonormal sets in the Hilbert spaces

Cd1,2 and the Schmidt coefficients λ j > 0 for at least two indices. Then, the partial

transposition with respect to the orthonormal basis having {|ψ(1)j 〉}dj=1 among its
elements yields

R := T⊗ idd2[|Ψ 〉〈Ψ |] =
d∑

i, j=1

√
λiλ j |ψ(1)j 〉〈ψ(1)i | ⊗ |ψ(2)i 〉〈ψ(2)j | . (80)

If λ1,2 > 0, let |Φ〉 = |ψ(1)1 ψ
(2)
2 〉 − |ψ(1)2 ψ

(2)
1 〉/√2, then R|Φ〉 = −√λ1λ2 |Φ〉,

whence T⊗ idd2[|Ψ 〉〈Ψ |] is not positive-definite.

Exercise 4

1. Using the Pauli matrices σ1,2,3 plus σ0 = 12, show that one can express the
trace operation X �→ T̂r [X ] = Tr(X)1 in the following way:

T̂r (X) = 1

2

∑

μ=0

σμ X σμ ∀X ∈ M2(C) . (81)

Hint: Consider X = σμ, μ = 0, 1, 2, 3.
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2. Using the Pauli matrices σ1,2,3 plus σ0 = 12, show that one can express the
transposition in the following way:

T[X ] = 1

2

∑

μ=0

εμσμ X σμ ∀X ∈ M2(C) , (82)

where ε0 = ε1 = ε3 = −ε2 = 1.
Hint: Consider X = σμ, μ = 0, 1, 2, 3.

3. Find the subspaces of Cd ⊗ Cd corresponding to the eigenvalues ±1 of the flip
operator V of Example 1.1 and their degeneracy.
Hint: Consider the symmetric and anti-symmetric vectors in Cd ⊗ Cd .

4. Let Λ1 : Md1(C) �→ Md(C) and Λ2 : Md(C) �→ Md2(C) be two CP maps;
show that their composition Λ2 ◦Λ1 : Md1(C) �→ Md2(C) is also CP.
Hint: Use the Stinespring representation (44).

5. With reference to Example 1.2, consider the family of states, called Werner states,

ρW = α1d2 + β V , (83)

where V is the flip operator of Example 1.1 and W := Tr (ρW V ). Use the spec-
tral properties of V to write

ρW = d(d − W )

d2 − 1

1d2

d2
+ dW − 1

d(d2 − 1)
V , −1 ≤ W ≤ 1 . (84)

Then, use the relation between the totally symmetric state P(d)+ and V to show
that the Werner states are separable if and only if −1 ≤ W < 0.
Hint: Relate the isotropy parameter F to the Werner parameter W .

6. Let ρ ∈ Mn(C) be a density matrix and show that any choice of Mn(C) � Xi ,
i ∈ I such that

∑
i∈I X†

i Xi = 1n can be used to decompose ρ = ∑
i∈I λi ρi .

Hint: Write ρ = √
ρ 1d

√
ρ with the identity written in terms of the Xi s.

7. Show that the flip operator introduced in Example 1.1 satisfies

V A ⊗ B V = B ⊗ A ∀A, B ∈ Md(C) . (85)

3.1 Entanglement Manipulation

Entangled states are a resource that can be used to perform classically forbidden
tasks, appropriately termed quantum novelties in chapter “Quantum Probability and
Quantum Information Theory”, Sect. 7, like teleportation and super-dense cod-
ing, like quantum information transmission discussed in detail in chapter “Physical
Realization of Quantum Information”, quantum cryptography in chapter “Quantum
Cryptography”, and quantum computation in chapter “Quantum Algorithms”.
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Maximally entangled two qubit states like the singlet state |Ψ11〉 in (9) provide
optimal resources for these tasks. However, one not always has maximally entangled
states at disposal, rather of the form

|ψ〉 = α |00〉 + β |01〉 + γ |10〉 + δ |11〉 (86)

with |α|2 + |β|2 + |γ |2 + |δ|2 = 1, or mixed states. One would then like to quantify
the entanglement content of a bipartite state and find methods to manipulate it. Of
course, taking into account the non-local character of entanglement, the class of
allowed operations must be restricted in order to avoid that entanglement be aug-
mented by non-local operations involving both parties at the same time.

Since the beginning of quantum information theory, an important issue has been
the so-called distillation [25, 12, 13, 20] of maximally entangled states like |Ψ11〉
out of non-maximally entangled states, by means of local quantum operations, that
is, by completely positive maps acting locally on the parties and classical commu-
nication among the parties: these are known as LOCC operations.

Consider two parties A and B sharing N copies of a bipartite system each one of
them described by a mixed state ρ so that they act upon the tensor product state

ρ⊗N = ρ ⊗ ρ ⊗ · · · ⊗ ρ︸ ︷︷ ︸
N times

. (87)

If D = {DN } denotes a particular sequence of LOCC protocols that A and B apply
to their local parties in the states ρ⊗N outputting MD singlets in the state vector
|Ψ11〉〈Ψ11|⊗MD , then the optimal asymptotic yield

ED[ρ] = sup
D

lim
N→+∞

MD

N
, (88)

called entanglement of distillation, represents the optimal fraction of singlet qubit
states that one can distill by means of LOCC out of the mixed state ρ.

Remark 5 Since successful local manipulations at some point must yield a singlet as
output and the latter is not positive under partial transposition, it turns out that distil-
lability of a bipartite state ρ is only possible if the initial state is entangled but also
only if it is not PPT [13, 20]. Indeed, all pure bipartite states are distillable [13, 20]
(see Example 3.2). Instead, while PPT states are not distillable, it is still unknown
whether all NPT states are distillable (see Definition 3); the entanglement which
cannot be distilled is called bound entanglement.

The distillation of maximally entangled states out of a mixed state has a dual
operation, called entanglement dilution, whereby one uses a certain number MF of
singlet states to form, by means of a sequence of suitable LOCC protocols F =
{FN }N , N copies of a bipartite mixed state ρ. The asymptotic optimal yield
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EC [ρ] = inf
F

lim
N→+∞

MF

N
, (89)

called entanglement cost, represents the minimal fraction of singlet qubit states that
are needed to form a mixed bipartite state ρ by means of LOCC.

Consider (86); as seen in Sect. 2, if it is separable, the reduced density matrix

ρ1 = Tr 2(|ψ〉〈ψ |) =
(|α|2 + |β|2 αγ ∗ + βδ∗
α∗γ + β∗δ |γ |2 + |δ|2

)
(90)

is a projection and vice versa. Therefore, the closer ρ1 is to a projection, the less
entangled is |ψ〉. A natural entanglement measure [13] is thus the von Neumann
entropy of ρ1 (see Exercise 1.2):

S(ρ1) = −1− p

2
log

1− p

2
− 1+ p

2
log

1+ p

2
, (91)

p =
√

1− C2 , 0 ≤ C = 2 |αδ − βγ | ≤ 1 . (92)

Indeed, it turns out that for pure bipartite states |Ψ 〉〈Ψ |
ED[|Ψ 〉〈Ψ |] = EC [|Ψ 〉〈Ψ |] = S(ρ1) , (93)

namely, the von Neumann entropy of the marginal states of |Ψ 〉 is a useful opera-
tional measure of the entanglement content of |Ψ 〉.

Furthermore, for pure bipartite states, the entanglement distillation and dilu-
tion processes are the inverse of each other. In general, one can only say that
EC [ρ] ≥ ED[ρ]; otherwise, starting from EC [ρ] singlets, one could form one copy
of ρ and then distill ED[ρ] > EC [ρ] singlets thus increasing the initial amount
of entanglement by means of local operations which is impossible. The general
irreversibility of entanglement manipulation comes about because of the existence
of bound entanglement, that is of entanglement, like that of PPT entangled states,
which cannot be distilled: The formation of any such state ρ requires an entangle-
ment cost that cannot be retrieved, EC [ρ] > ED[ρ] = 0.

In the case of pure bipartite states, reversibility is guaranteed by the fact that
they can always be distilled (see Remark 5), whence EC [|Ψ 〉〈Ψ |] ≤ ED[|Ψ 〉〈Ψ |].
In fact, if ED[|Ψ 〉〈Ψ |] > EC [|Ψ 〉〈Ψ |], then one could use one singlet to form
1/EC [|Ψ 〉〈Ψ |] states |Ψ 〉 and then distill ED[|Ψ 〉〈Ψ |]/EC [|Ψ 〉〈Ψ |] > 1 singlets,
again increasing the given amount of entanglement by local operations and classical
communication.

3.2 Concurrence

Bipartite density matrices ρ can always be decomposed into infinitely many convex
combinations of pure bipartite states; (see Exercise 4.6); thus, a natural replacement
of (89) is [9]
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EF [ρ] = inf

{
∑

i

λi S(ρi
1) : ρ =

∑

i

λi |ψ i 〉〈ψ i |
}
, (94)

that is the smallest convex combination of the von Neumann entropies S(ρi
1) of

the reduced density matrices Tr2(|ψ i 〉〈ψ i |) of the pure states |ψ i 〉〈ψ i | in terms of
which ρ can be convexly expanded as

∑
i λi |ψ i 〉〈ψ i |, λi ≥ 0,

∑
i λi = 1. This

quantity is known as entanglement of formation [13].

Remark 6 The entanglement cost and the entanglement of formation are related
by [13]

EC [ρ] = lim
N→∞

EF [ρ⊗N ]
N

. (95)

Consider N = 2; since a protocol that yields ρ can be used to form ρ ⊗ ρ, one in
general has EF [ρ ⊗ ρ] ≤ 2 EF [ρ] and thus EC [ρ] < EF [ρ]. A recent result [16]
(see chapter “Quantum Entropy and Information”, Sect. 7.5) has proved that the
entanglement of formation is not additive and thus the entanglement cost is not in
general equal to the entanglement of formation.

Surprisingly [35], in the case of two qubits, the variational quantity (94) can be
expressed as in (91) with C in (92) substituted by the so-called concurrence

C = max {0, λ1 − λ2 − λ3 − λ4} , (96)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the square roots of the (positive) eigenvalues of
the 4 × 4 matrix R = ρ σ

(1)
2 σ

(2)
2 ρ∗ σ (1)2 σ

(2)
2 , where ρ∗ is the density matrix with

complex conjugate entries with respect to those of ρ (in a fixed representation).

Example 4

1. Given the two-qubit state vector

|ψ̃〉 = σ2 ⊗ σ2|ψ∗〉 = −α∗ |11〉 + β∗ |10〉 + γ ∗ |10〉 − δ∗ |00〉 , (97)

where |ψ∗〉 is the conjugate vector of |ψ〉 with respect to the basis |0〉, |1〉, it is
immediate to check that the 4× 4 matrix

R = |ψ〉〈ψ |ψ̃〉〈ψ̃ | (98)

has C2 = 4 |αδ − βγ |2 as positive eigenvalue. The concurrence of the pure state
|ψ〉 is thus given by the square root of the latter: when it is maximal, C = 1, then
p = 1 and S(ρ1) = log 2 is maximal, in which case |ψ〉 is maximally entangled;
otherwise, when C = 0 is minimal, p = 1, S(ρ1) = 0, and |ψ〉 is separable.



134 F. Benatti

2. Consider the two-qubit density matrix

ρ =

⎛

⎜⎜⎝

a 0 0 0
0 b c 0
0 c d 0
0 0 0 e

⎞

⎟⎟⎠ , a, b, d, e ≥ 0 , a + b + d + e = 1, bd ≥ c2 , (99)

written with respect to the standard basis |i j〉, i, j = 0, 1. One readily computes

ρ̃ =

⎛

⎜⎜⎝

e 0 0 0
0 d c 0
0 c b 0
0 0 0 a

⎞

⎟⎟⎠ , R = ρρ̃ =

⎛

⎜⎜⎝

ae 0 0 0
0 c2 + bd 2bc 0
0 2bc c2 + bd 0
0 0 0 ae

⎞

⎟⎟⎠ . (100)

The eigenvalues of R are ae ≥ 0 doubly degenerate and (
√

bd−c)2, whence the
concurrence is

C(ρ) = max
{
0, 2(|c| − √ae)

}
(101)

and is thus proportional to the negative eigenvalue of the partially transposed ρ.

4 Complete Positivity, Open Quantum Systems,
and Entanglement

The standard time evolution of the observables X = X† ∈ Md(C) of a finite-level
system S, X �→ Xt , forms a group of linear maps, Ut : Md(C) �→ Md(C)

Xt := Ut [X ] = U †
t X Ut , Ut = e−i H t (h̄ = 1) , (102)

where H = H† ∈ Md(C) is the Hamiltonian of the system, while the dual time
evolution (see (43)) of its states,

U∗
t [ρ] = Ut ρU †

t , (103)

is a solution to the Liouville–von Neumann equation

∂tρt = −i
[
H , ρt

]
. (104)

The time evolution generated by this equation is reversible and is typical of closed
quantum systems, namely, of quantum systems which can be considered isolated
from the environment in which they are immersed.

When the interactions between system S and environment E , typically a heat
bath in equilibrium at a certain temperature, cannot be neglected, one treats the
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subsystem S of interest as an open quantum system and tries to recover for it a
so-called reduced dynamics by tracing away the (usually infinitely many) degrees
of freedom of the environment. Practically speaking, one starts from a total Hamil-
tonian HT = HS + HE + λ HI , where HS,E are the Hamiltonian of the system and
environment, respectively, while HI is an interaction term with λ an a-dimensional
coupling constant. The formal time evolution of any system S observable of the
form X S ⊗ 1E is given by

X S ⊗ 1E �→ ei t HT X S ⊗ 1E e−i t HT , (105)

and the reduced dynamics in the Heisenberg picture is obtained by means of the
expectation values

X S �→ X S(t) = ωE

(
ei t HT X S ⊗ 1E e−i t HT

)
(106)

with respect to an environment state ωE which is left invariant by the environment
time evolution. The resulting reduced dynamics is highly complicated; however, if
the coupling is sufficiently weak (λ " 1), a number of techniques allow one to
disentangle the time evolution of S from that of S + E and to approximate it by a
semigroup of completely positive maps γt , t ≥ 0, on the system density matrices
satisfying the forward in time composition law

γt+s = γt ◦ γs = γs ◦ γt , s, t ≥ 0 . (107)

The presence of the environment E manifests itself as a source of dissipation and
noise [2, 11], described by the generator of the semigroup, namely, by the left-hand
side of the master equation

∂tρt = −i
[
H , ρt

] + D[ρt ] =: L[ρ] , (108)

where ρ �→ D[ρ] is a linear map of the form [15]

D[ρ] =
d2−1∑

i, j=1

Ki j

(
Fi ρ F†

j − 1

2

{
F†

j Fi , ρ
})

, (109)

with K = [Ki j ] a positive (d2−1)×(d2−1)matrix, known as Kossakowski matrix,
and the Fi d× d matrices that together with Fd2 = 1/d2 form an orthonormal basis
in Md(C) with respect to the Hilbert–Schmidt scalar product Tr (F†

j Fi ) = δi j (see
Exercise 4.6).

Remark 7 Semigroups generated by master equations of the form (108) are the stan-
dard way to describe decoherence effects suffered by few degrees of freedom as a
result of the action of many degrees of freedoms weakly coupled to them. Usu-
ally, the few degrees of freedom are those of a finite-level open quantum system



136 F. Benatti

immersed in a large thermal reservoir with which it weakly interacts and which
acts as a source of dissipation and noise. The semigroup property corresponds to
the irreversibility of the dynamics due to the non-standard piece D which describes
the noisy and dissipative effects caused by the presence of the environment and are
such that γ−t [ρ] for t > 0 cannot be a solution to (109). Since K ≥ 0, by diagonal-

izing it, the term
∑d2−1

i, j=1 Ki j Fi ρ F†
j can be cast in Kraus–Stinespring form (44),

∑d2−1
�=1 D� ρ D†

� ; this identifies it as a completely positive map that generically
transforms pure states into mixtures and may thus be interpreted as a noise term.
Further, the anti-commutator corresponds to a damping term

∂tρt = −i
(
− i

2
Γ

)
ρt + i ρt

( i

2
Γ

)
= −1

2
{Γ , ρt } , (110)

where Γ = ∑d2−1
i, j=1 Ki j F†

j Fi ≥ 0. Altogether, these two contributions to the
dissipative part of the generator contribute to preserve the overall probability:
∂t Tr (ρt ) = 0.

In other words, the master equation (108) can be taken as quantum version of a
classical Fokker–Planck equation with the completely positive map in (109) corre-
sponding to the classical white-noise diffusive term and the anti-commutator to the
friction term.

The reversible time evolution generated by (103) is automatically completely
positive for it consists of linear maps of the form (44) with only one (unitary) Kraus
operator; instead, because of the presence of the dissipative term D[ρ] this is not in
general true for the irreversible maps γt .

Theorem 1 The semigroup {γt }t≥0 generated by (108) consists of completely posi-
tive maps if and only if the Kossakowski matrix K = [Ki j ] ≥ 0 [15, 26].

Proof We give a sketch of the proof following [15]. If γt is completely positive,
then, from Lemma 2, γt ⊗ idd [P(d)+ ] ≥ 0. Let |ψ〉 ∈ Cd2

be such that 〈ψ |Ψ (d)+ 〉 = 0;
by expanding in t , one finds

0≤〈ψ | γt⊗ idd [P(d)+ ] |ψ〉= t 〈ψ |L⊗ idd [P(d)+ ] |ψ〉 + o(t)

= t
d2−1∑

i, j=1

Ki j 〈ψ | Fi⊗1d P(d)+ F†
j ⊗1d |ψ〉+o(t), (111)

whence, for all |ψ〉 ∈ Cd2
,
∑d2−1

i, j=1 Ki j 〈ψ | Fi ⊗1d P(d)+ F†
j ⊗1d |ψ〉 ≥ 0. Let Ψ =

[Ψi j ] be the d×d matrix with entries given by the components of |ψ〉with respect to

a chosen orthonormal basis; the orthogonality condition 〈ψ |Ψ (d)+ 〉 = ∑d
i=1 ψi i = 0

makes Ψ a traceless matrix that can be expanded as Ψ = ∑d2−1
i=1 xi Fi using

the Hilbert–Schmidt basis appearing in generator (109). By explicit computation,√
d〈Ψ (d)+ | F†

j ⊗ 1d |ψ〉 = Tr (F†
j Ψ ) = x j (see Exercise 4.6), thus
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d2−1∑

i, j=1

Ki j 〈ψ | Fi ⊗1d P(d)+ F†
j ⊗1d |ψ〉 =

d2−1∑

i, j=1

x∗i Ki j x j = 〈x | K |x〉 ≥ 0 . (112)

Since vectors |x〉 ∈ Cd2−1, traceless d2 × d2 matrices, and |ψ〉 ⊥ |Ψ (d)+ 〉 are in
one-to-one correspondence, by varying the latter one gets that 〈x | K |x〉 ≥ 0 for all
|x〉 ∈ Cd2−1, whence K ≥ 0.

In order to prove the converse, consider two orthogonal vectors |ψ〉, |φ〉 ∈ Cd2

and, as in the argument of above, the corresponding d2 × d2 matrices Ψ = [ψi j ],
Φ = [φi j ]. Then, 〈ψ |φ〉 = 0 results in Tr (Ψ †Φ) = Tr (ΨΦ†) = 0; as previously,

one expands ΨΦ† = ∑d2−1
i=1 xi Fi and computes, up to first order in t ,

〈ψ | γt ⊗ idd [|ψ〉〈ψ |] |φ〉 - t 〈ψ | γt ⊗ idd [|ψ〉〈ψ |] |φ〉

- t
d−1∑

i, j=1

Ki j (Tr (F†
i ΨΦ

†))∗ Tr (F†
j ΨΦ

†) (113)

- t 〈x | K |x〉 .

The positivity of the Kossakowski matrix implies 〈φ|L ⊗ idd [|ψ〉〈ψ |] |φ〉 ≥ 0 for
all 〈ψ |φ〉 = 0 so that the leftmost side of the previous expression cannot become
negative. Suppose there exists an initial state ρ such that γt∗ ⊗ idd [ρ] assumes a zero
eigenvalue at a certain time t∗ and a negative eigenvalue at t = t∗ + ε as soon as
ε > 0. By expanding in ε, one finds

0 > 〈φ| γt∗+ε⊗idd [ρ] |φ〉 - 〈φ| γt∗ [ρ] |φ〉+ε 〈φ|L⊗idd [γt∗⊗idd [ρ]] |φ〉 . (114)

Since ε can be taken arbitrarily small, this cannot be true if |φ〉 is orthogonal to
the eigenvectors |ψ〉 of γt∗ ⊗ idd [ρ] and the contribution of order 1 in ε > 0 is
strictly positive, 〈φ|L ⊗ idd [|ψ〉〈ψ |] |φ〉 > 0 for all |ψ〉. A more refined analysis
extends this argument to the case when 〈φ|L ⊗ idd [|ψ〉〈ψ |] |φ〉 ≥ 0 [21]. Thus
if the Kossakowski matrix is positive, γt ⊗ idd preserves positivity whence γt is
completely positive. �

If K is not positive definite, then the physical consistency of γt is doubtful as
negative probabilities may arise by the action of γt ⊗ idd on the entangled states of
the bipartite system S+ S, surely on the symmetric state P(2)+ because of Lemma 2.
On the other hand, if there were in nature no entangled states of S + S, then the
positivity of γt would be enough to make it a possible mathematical description of
a physical process.

Example 5

1. Consider the one-qubit purely dissipative master equation

∂tρt = L1[ρt ] = 1

2

3∑

i=1

(σi ρt σi − ρt ) . (115)
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Comparing with (108), Fi = σi/
√

2, σ1,2,3 the Pauli matrices, and the Kos-
sakowski matrix K = diag(1, 1, 1) is positive. Using Exercises 5.2 and 4.1 and
the Bloch representation of the initial state, ρ = 1

2 (12 + r · σ ), one computes

γ
(1)
t [ρ] = 1

2
(12 + λt r · σ ) = 1− λt

2
12 + λt ρ

=
(
λt id2 + 1− λt

2
T̂r

)
[ρ] = 1+ 3λt

4
ρ + 1− λt

4

3∑

i=1

σi ρ σi ,

(116)

where λt = exp(−2t) and we have used that Tr (ρ) = 1. Therefore, the dis-
sipative time evolution γ (1)t is written in Kraus–Stinespring form with Kraus
operators given by the Pauli matrices; it is thus completely positive in accordance
with Theorem 1.

2. Consider the one-qubit purely dissipative master equation

∂tρt = L2[ρt ] = 1

4

3∑

i=1

εi (σi ρt σi − ρt ) , (117)

where, as in Exercise 4.2, ε1 = 1 = ε3 = −ε2. Comparing with (108), the
Kossakowski matrix K = diag(1, 1, 1) is not positive. Integration yields

γ
(2)
t [ρ] = 1

2
(12 + r1σ1 + λt r2σ2 + r3σ3) = ρ + λt − 1

2
r2σ2 =

=
(1+ λt

2
id2 + 1− λt

2
T

)
[ρ] = 3+ λt

4
ρ + 1− λt

4

3∑

i=1

εiσi ρ σi ,

(118)

where it has been used that r2σ2 = ρ − T[ρ] and it has been set λt = exp(−2t).
As in the previous example, the Kraus operators are the Pauli matrices; how-
ever the time evolution is not in Kraus–Stinespring form as one of the terms is
multiplied by ε2 = −1. Because of Theorem 1, it cannot be completely positive;
indeed, the corresponding Choi matrix is easily computed by using Exercises 5.2
and 5.3

γ
(2)
t ⊗ id2[P(2)+ ] = 1

4

(
14 + σ1 ⊗ σ1 − λt σ2 ⊗ σ2 + σ3 ⊗ σ3

)

= 1

2

⎛

⎜⎜⎝

1 0 0 (1+ λt )/2
0 0 (1− λt )/2 0
0 (1− λt )/2 0 0

(1+ λt )/2 0 0 1

⎞

⎟⎟⎠
(119)

and has a negative eigenvalue −(1− λt )/2 for all t > 0.
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3. Complete positivity is stronger than simple positivity [4]; in order to compare the
physical constraints imposed on the dissipative dynamics by these two requests,
consider the following one-parameter family {ρt }t≥0 of density matrices of a
single two-level system

ρt = 1

2

(
1+ e−at r3 e−bt (r1 − i r2)

e−bt (r1 + i r2) 1− e−at r3

)
, (120)

with a, b ≥ 0 and ri ∈ R, i = 1, 2, 3, such that
∑3

i=1 r2
i ≤ 1. These conditions

guarantee that the matrices ρt are positive semi-definite; indeed, for 2×2 density
matrices, positivity semi-definiteness is equivalent to the non-negativity of both
trace and determinant. Now, Tr (ρt ) = 1 while

Det(ρt ) =
1−

(
e−2atr2

3 + e−2bt (r2
1 + r2

2 )
)

4
≥

1−
(

r2
1 + r2

2 + r2
3 )

)

4
≥ 0 .

By using the Bloch vector representation (see Sect. 2.1 in chapter “Hilbert Space
Methods for Quantum Mechanics”), one writes the time evolution (120) as

ρ = 12 + r · σ
2

, r =
⎛

⎝
r1
r2
r3

⎞

⎠ �−→ ρt = 12 + r t · σ
2

, r t =
⎛

⎝
e−btr1

e−btr2
e−atr3

⎞

⎠ .

(121)
In fact, ρt is obtained as the action of a linear map γt on ρ,

ρt = 12 +∑3
i=1 riγt [σi ]
2

, γt [σ1,2] = e−bt σ1,2 , γt [σ3] = e−at σ3 . (122)

By taking the time derivative and using Exercise 5.2, one finds

σ̇1,2 = −b σ1,2 = D[σ1,2] , σ̇3 = − a σ3 = D[σ3] , (123)

where

D[ρ] = a

4

(
σ1 ρ σ1 + σ2 ρ σ2 − 2ρ

)
+

(b

2
− a

4

) (
σ3 ρ σ3 − σ3

)
. (124)

Therefore, the positive, trace-preserving maps γt = etD form a semigroup that
describe an irreversible process where the diagonal and off-diagonal elements of
any initial density matrix decay with different rates a, respectively, b, to those of
the totally mixed state ρ∞ = 1

2 . Comparing with (109) one sees that the matrices
Fi = σi/

√
2, while the Kossakowski matrix reads
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K = 1

2

⎛

⎝
a 0 0
0 a 0
0 0 b − a

2

⎞

⎠ . (125)

Such a matrix is positive, and thus the map γt is completely positive, if and only
if a ≥ 2b. Indeed, by using Exercise 5.3, the Choi matrix (45) of γt results:

γt ⊗ id2[P(2)+ ] = 1

4

(
1⊗ 1+ e−bt (

σ1 ⊗ σ1 − σ2 ⊗ σ2
)+ e−at σ3 ⊗ σ3

)

= 1

4

⎛

⎜⎜⎝

1+ e−at 0 02e−bt

0 1− e−at 0 0
0 0 1− e−at 0

2e−bt 0 0 1+ e−at

⎞

⎟⎟⎠ .

(126)

This matrix is positive if and only if 1 + e−at ≥ 2e−bt : when b ≥ a/2 this is
always true, whereas if b < a/2, an expansion at small times yields

1+ e−at − 2e−bt - (2b − a) t < 0 . (127)

4.1 Positive and Completely Positive Semigroups

The last example shows that complete positivity implies a hierarchy between the
decay rates of the matrix elements of the system S that simple positivity would not
ask for. This is due to the fact that one assumes that there might exist entangled
states of bipartite systems evolving according to a dissipative time evolution of the
form γt ⊗ id, where only one party is affected by the dynamics. While the existence
of entangled states is hardly questionable, the form of the time evolution might
look too abstract, physically speaking. For instance, instead of thinking of the inert
party as a distant quantum system that happened to be entangled with the other
one before the dynamics γt started, one could think of two systems of the same
kind, not interacting, but immersed in a same environment or being affected by two
independent dissipative dynamics: In the first case, the mathematical description of
the actual time evolution would use a semigroup consisting of maps Γt = γt ⊗ γt ,
in the second one of maps of the form Γt = γ (1)t ⊗ γ (2)t .

A minimal request of physical consistency is that the maps Γt preserve the pos-
itivity of all states of S + S on which they act. The following two results show that
positivity of γt ⊗ γt is only guaranteed if γt is completely positive [6], while that of
γ
(1)
t ⊗ γ (2)t , γ (1)t �= γ (2)t , is less constraining [5, 6].

Proposition 2 Given a semigroup of maps γt generated by (108), the map Γt =
γt ⊗ γt , t ≥ 0, is positive if and only it γt is completely positive [7].
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Proof If γt is completely positive, both γt ⊗ idd and idd ⊗ γt are positive and such
is their composition Γt .

The maps Γt form a semigroup with generator L ⊗ idd + idd ⊗ L; if they are
positive, then, as in the proof of Theorem 1, for all orthogonal ψ, φ ∈ Cd ⊗ Cd , it
must hold that

0≤〈φ| (L⊗ idd + idd ⊗ L)[|ψ〉〈ψ |] |φ〉

=
d2−1∑

i, j=1

Ki j

(
(Tr (F†

i ΨΦ
†))∗ Tr (F†

j ΨΦ
†)+ (Tr (F†

i (Ψ
†Φ)T))∗ Tr (F†

j (Ψ
†Φ)T)

)
,

(128)

where Ψ = [
ψi j

]
andΦ = [

φi j
]

are d×d matrices consisting of the coefficients of
the expansions of |ψ〉 and |φ〉 with respect to a chosen orthonormal basis {|i j}di, j=1

in Cd ⊗ Cd and (X)T denotes transposition of a matrix X ∈ Md(C) with respect
to the chosen basis. Notice that, since ψ and φ are assumed orthogonal, it follows

that Tr (ψ†Φ) = 0. Let Md(C) � X = ∑d2−1
i=1 xi Fi , xi = Tr (F†

i X), be a generic
traceless matrix; because of their same spectral structure, X and its transposed XT

are similar: XT = Φ−1 X Φ, Φ ∈ Md(C). Set Ψ † = Φ−1 X ; then, X = ΦΨ † and
(Ψ †Φ)T = (XT)T = X , whence

〈φ| (L⊗ idd + idd ⊗ L)[|ψ〉〈ψ |] |φ〉 = 2〈x | K |x〉 ≥ 0 , (129)

for all |x〉 ∈ Cd2−1; thus, K = [Ki j ] ≥ 0 and γt is completely positive by Theo-
rem 1. �

Proposition 3 Consider two semigroups γ (1)t and γ (2)t generated by two master
equations of the form (108), with dissipative terms

D1[ρ] =
d2−1∑

i=1

f (1)i

(
F (1)i ρ F (1)i − 1

2

{
(F (1)i )2 , ρ

})
, (130)

D2[ρ] =
d2−1∑

i=1

f (2)i

(
F (2)i ρ F (2)i − 1

2

{
(F (2)i , ρ

})
, (131)

diagonal with respect to a Hilbert–Schmidt basis of traceless, Hermitian matrices
F1,2

i ∈ Md(C). If all coefficients f (1,2)i ≥ 0, but for one fixed f (2)k and f (1)i ≥ | f (2)k |
for all i , f (2)i ≥ | f (2)k | for all i �= k, then the maps Γt = γ (1)y ⊗ γ (2)t are positive for
all t ≥ 0 [6].
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Proof As in the proof of Theorem 1, we show that for all orthogonal ψ, φ ∈ Cd ⊗
Cd ,

〈φ| (L1 ⊗ idd + idd ⊗ L2)[|ψ〉〈ψ |] |φ〉 =
d2−1∑

i=1

f (1)i

∣∣∣Tr (F (1)i ΨΦ†)

∣∣∣
2

+
d2−1∑

1=i �=k

f (2)i

∣∣∣Tr (F (2)i (Ψ †Φ)T)

∣∣∣
2 − | f (2)k |

∣∣∣Tr (F (2)k (Ψ †Φ)T)

∣∣∣
2 ≥ 0 .

(132)

Because of the assumptions on the Hilbert–Schmidt bases {F (1,2)i }d2

i=1, one has (see
Exercise 5.4)

d2−1∑

i=1

(
Tr (F (1)i ΨΦ†)

)2 = Tr
(
ΨΦ†ΨΦ†

)
= Tr

(
(Φ†Ψ )T(Φ†Ψ )T

)

=
d2−1∑

i=1

(
Tr (F (2)i (Φ†Ψ )T)

)2
.

(133)

Therefore, one can bound
∣∣∣Tr (F (2)k (Φ†Ψ )T)

∣∣∣
2

from above by

d2−1∑

1=i

f (2)i

∣∣∣Tr (F (2)i (Ψ †Φ)T)

∣∣∣
2 −

d2−1∑

1=i �=k

f (2)i

∣∣∣Tr (F (2)i (Ψ †Φ)T)

∣∣∣
2
, (134)

whence it follows that

〈φ| (L1 ⊗ idd + idd ⊗ L2)[|ψ〉〈ψ |] |φ〉 ≥
d2−1∑

i=1

(
f (1)i − | f (2)k |

) ∣∣∣Tr (F (1)i ΨΦ†)

∣∣∣
2

+
d2−1∑

1=i �=k

(
f (2)i − | f (2)k |

) ∣∣∣Tr (F (2)i (Ψ †Φ)T)

∣∣∣
2 ≥ 0 .

(135)

�
Example 6

1. The semigroups of Examples 5.1 and 5.2 fulfill the hypothesis of Proposition 2;
therefore, the maps

Γt = γ (1)t ⊗ γ (2)t = λt
1+ λt

2
id12 + 1− λ2

t

4
T̂r 1

+ λt
1− λt

2
T2 + (1− λt )

2

4
T̂r 1 ⊗ T2

(136)
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are positivity preserving on the states of two qubits. However, the Kossakowski
matrix in the generator of the semigroup consisting of these maps is

K =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠⊗ 13 + 13 ⊗
⎛

⎝
1 0 0
0 −1 0
0 0 1

⎞

⎠ (137)

and thus not positive definite. Therefore, Γt cannot be completely positive; its
Choi matrix can better be studied by writing the totally symmetric projector
P(4)+ ∈ M16(C) as follows:

P(4)+ = 1

4

1∑

a,b;c,d=0

|ab〉〈cd| ⊗ |ab〉〈cd| = (P(2)+ )13 ⊗ (P(2)+ )24 , (138)

with subindexes denoting to which qubits the 4 × 4 symmetric projectors P(2)+
refer to. Then, one computes

Γt ⊗ id4[P(4)+ ] = 1+ λt

4
(P(2)+ )13 ⊗

(
2λt (P

(2)
+ )24 + V24

)

+ 1− λt

16

(
4λt (P

(2)
+ )13 + (1− λt )113

)
⊗ V24 ,

(139)

where V24 is the flip operator for the second and fourth qubits. Let |Ψ11〉 be the
anti-symmetric Bell state (9); then, P(2)|Ψ11〉 = 0, V |Ψ11〉 = −|Ψ11〉,

Γt⊗id4[P(4)+ ](|Ψ11〉)13⊗(|Ψ11〉)24 = − (1− λt )
2

16
(|Ψ11〉)13⊗(|Ψ11〉)24 , (140)

whence, as λt = exp(−2t), the Choi matrix of Γt is not positive for all t > 0.
2. Since all Γt : M4(C) �→ M4(C) are positive maps, a natural question is whether

they are decomposable in the sense of Definition 4. Since T◦T = id and T̂r ◦T =
T̂r , where T̂r is the trace operation Tr [X ] = Tr (X)1, and T1 ⊗ T2 = T12,
expression (136) can be recast as

Γt = λt
1+ λt

2
id12 + 1− λ2

t

4
T̂r 1

+ 1− λt

2

(
λt T1 + 1− λt

2
T̂r 1

)
◦ T12 .

(141)

The first line is the sum of two completely positive maps and is thus completely
positive; in order to check the state of the second line, we compute the Choi
matrix of Λt = λt T1 + 1−λt

2 T̂r 1 as done in the previous example:

Λt ⊗ id4[P(4)+ ] = 1

2

(
λt V13 + 1− λt

2
113

)
⊗ (P(2)+ )24 . (142)
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Since the flip operator V has eigenvalues ±1, the non-null eigenvalues of Λt ⊗
id4[P(4)+ ] are (1+λt )/4 and (1−3λt )/4; the latter is positive only if t = 0 and t ≥
(log 3)/2 in which case Γt results are decomposable. When 0 < t < (log 3)/2,
the Choi matrix has a negative eigenvalue and Λt is not completely positive;
however, this does not mean that Γt is not decomposable as the decomposition
into (141) is not unique. This question will be answered in the next section in
connection with certain PPT-entangled states of two plus two qubits.

Exercise 5

1. Consider a spin 1/2 particle in a constant magnetic field, that is, a qubit with
Hamiltonian H = ∑3

i=1 hiσi , h ∈ R
3. By using the algebra of the Pauli matri-

ces, show that, in terms of the Bloch vector, the time evolution equation (103)
reads

dr
dt

= 2h · r (143)

2. Prove that the linear map Λ[X ] =
∑3

i=1
(di/2)

(
σi X σi − X

)
acts as follows:

D[σ1] = −(d2 + d3) σ1 , D[σ2] = −(d1 + d3) σ2 , D[σ3] = −(d1 + d2) σ3 .

(144)

3. Prove that the projector onto the totally symmetric state (14) of two qubits can
be written as

P(2)+ = 1

4

(
12 ⊗ 12 + σ1 ⊗ σ1 − σ2 ⊗ σ2 + σ3 ⊗ σ3

)
. (145)

4. Given a set of traceless matrices Fi ∈ Md(C), 1 ≤ i ≤ d2 − 1 plus Fd2 =
1d/

√
d such that Tr

(
F†

j Fi

)
= δi j , show that they constitute a Hilbert–Schmidt

orthonormal basis in Md(C), namely that, for all X ∈ Md(C),

X =
d2∑

i=1

Tr (F†
i X) Fi . (146)

4.2 PPT-Entangled States

As already observed, when the dimensions of the parties involved are not as indi-
cated in Corollary 4, there can exist bipartite-entangled states which remain positive
under partial transposition.

As an example, consider a system consisting of two pairs of qubits described by
the matrix algebra M16(C) = M4(C) ⊗ M4(C). Consider the standard basis |i〉,
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i = 0, 1 and the Pauli matrices σα , α = 0, 1, 2, 3, with σ0 = 12, the 2 × 2 identity
matrix and σ3|i〉 = (−1)i |i〉. Set σαβ = σα ⊗ σβ and use the totally symmetric

state P(4)+ to construct 16 orthonormal states (a basis in C16, see Exercise 4.2) and
orthogonal one-dimensional projections

|Ψαβ〉 = 14⊗σαβ |Ψ (4)+ 〉 , Pαβ = |Ψαβ〉〈Ψαβ | = 14⊗σαβ P(4)+ 14⊗σαβ . (147)

An interesting class of states, called lattice states [5], is given by density matrices
of the form

ρI = 1

#(I )

∑

(α,β)∈I

Pαβ , (148)

namely, by equally weighted convex combinations of projections labeled by pairs
(α, β) of indexes from a subset I ⊆ L = {(α, β) : α, β = 0, 1, 2, 3} of cardinality
#(I ).

Lemma 6 Let I = {(0, 2), (1, 1), (2, 3), (3, 1), (3, 2), (3, 3)}; then,

ρI = 1

6

(
P02 + P11 + P23 + P31 + P32 + P33

)
(149)

is a PPT lattice state.

Proof We shall use transposition over the first party; then, Example 1.1 one com-
putes

T⊗ id4[Pαβ ] = 1

4

(
14 ⊗ σαβ

)
V

(
14 ⊗ σαβ

)
. (150)

Furthermore, Exercises 4.5 and 4.3 yield the eigenvalue–eigenprojection relations

V |Ψγδ〉 = V 14 ⊗ σγ δ V |Ψ+〉 = 14 ⊗ (σγ δ)T|Ψ+〉 = εγ εδ|Ψγδ〉 , (151)

where (σα)T = εα σα and ε2 = −1, otherwise = 1. Then, inserting the resulting
spectral decomposition of V , V = ∑

(γ,δ)∈L εγ εδ Pγ δ , into (150), one obtains

T⊗ id4[Pαβ ] = 1

4

∑

(γ,δ)∈L

εγ εδ 14 ⊗ σαβσγ δ P(4)+ 14 ⊗ σγ δσαβ . (152)

Consider the algebraic relations between the Pauli matrices:

σ0σμ = σμ , σiσ j = δi j + i
3∑

k=1

εi jkσk , i, j, k �= 0 . (153)
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It proves convenient to recast them in the form σασγ = ημαγ σμ, where μ is uniquely
determined by (α, β) through the Hermitian and unitary matrices

η0 = 14 , η
1 =

⎛

⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 i
0 0 −i 0

⎞

⎟⎟⎠ , η2 =

⎛

⎜⎜⎝

0 0 1 0
0 0 0 −i
1 0 0 0
0 i 0 0

⎞

⎟⎟⎠ , η3 =

⎛

⎜⎜⎝

0 0 0 1
0 0 i 0
0 −i 0 0
1 0 0 0

⎞

⎟⎟⎠ . (154)

Then, with ε = diag(1, 1,−1, 1), one writes (152) as

T⊗ id4[Pαβ ] = 1

4

∑

(μ,ν)∈L

(
ημ ε ημ

)

αα

(
ην ε ην

)

ββ
Pμν . (155)

The matrices ημεημ are diagonal: η0εη0 = ε, η1εη1 = diag(1, 1, 1,−1), η2εη1 =
diag(−1, 1, 1, 1), and η3εη1 = diag(1,−1, 1, 1); by introducing the 4 × 4 real,
symmetric matrix

ε̃ =

⎛

⎜⎜⎝

1 1 −1 1
1 1 1 −1
−1 1 1 1
1 −1 1 1

⎞

⎟⎟⎠ (156)

one finally finds that any partial transposed lattice state is still diagonal with respect

to the orthonormal basis
{
|Ψαβ〉

}

(α,β)∈L
:

T⊗ id4[ρI ] = 1

4#(I )

∑

(μ,ν)∈L

(
ε̃ X I ε̃

)

μν
Pμν , (157)

with eigenvalues given by the entries of (1/4#(I ))̃ε X I ε̃, where X I is the charac-
teristic matrix of the subset I ⊆ L:

(X I )αβ =
{

1 (α, β) ∈ I
0 otherwise

. (158)

In the case of the subset I of this lemma,

X I =

⎛

⎜⎜⎝

0 0 1 0
0 1 0 0
0 0 0 1
0 1 1 1

⎞

⎟⎟⎠ , ε̃ X I ε̃ = 4

⎛

⎜⎜⎝

0 1 1 0
0 0 0 0
1 0 1 0
0 0 1 1

⎞

⎟⎟⎠ , (159)

whence T⊗ id4[ρI ] = 1

6

(
P01 + P02 + P20 + P22 + P32 + P33

)
≥ 0. �
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By using Lemma 5, we can now show that the PPT state ρI of above is entangled
and, at the same time, that the positive map Γt of Examples 6.1 and 6.2 are not
decomposable for 0 < t < (log 3)/2.

Proposition 4 Consider the PPT state ρI in Lemma 6 and the maps Γt = γ (1)⊗γ (2)t
in (141). It turns out that, for 0 < t < (log 3)/2,

Tr
(
ρI Γt ⊗ id4[P(4)+ ]

)
< 0 , (160)

so that Γt is not decomposable and ρI entangled.

Proof Denote by Sμ the completely positive maps on M2(C) given by Sμ(X) =
σμ X σμ, where σμ, 0 ≤ μ ≤ 4, are the Pauli matrices and by Sμν the 16 completely
positive maps on M4(C) defined by Sμν[X ] = σμν X σμν where σμν = σμ ⊗ σν .
Then one rewrites the maps γ (1,2)t in Examples 5.1 and 5.2 and Example 6.1 as
follows:

γ
(1)
t = 1+ 3λt

4
S0 + 1− λt

4

3∑

i=1

Si (161)

γ
(2)
t = 3+ λt

4
S0 + 1− λt

4

3∑

i=1

εi Si (162)

Γt = (1+ 3λt )(3+ λt

16
S00 + 1− λ2

t

8

3∑

i=1

Si0

+ (1+ 3λt )(1− λt )

16

3∑

i=1

εi S0i + (1− λt )
2

16

3∑

i, j=1

ε j Si j .

(163)

Because of the symmetry of P(4)+ , the projections in (147) also read

Pαβ =
(
14 ⊗ σαβ

)
P(4)+

(
14 ⊗ σαβ

)

=
(
σαβ ⊗ 14

)
P(4)+

(
σαβ ⊗ 14

)
= Sαβ ⊗ id4[P(4)+ ] .

(164)

Then,

Γt ⊗ id4[P(4)] = (1+ 3λt )(3+ λt )

16
P00 + 1− λ2

t

8

3∑

i=1

Pi0

+ (1+ 3λt )(1− λt )

16

3∑

i=1

εi P0i + (1− λt )
2

16

3∑

i, j=1

ε j Pi j

(165)
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and, because of the orthogonality of the Pαβ , one computes

Tr
(
ρI Γt ⊗ id4[P(4)+ ]

)
= 1− λt

6× 16

(
− (1+ 3λt ) + (1− λt )

3∑

i, j=1

ε j

)

= 1− λt

48

(
1− 3λt

)
(166)

which becomes negative for 1/3 < λt e−2t < 1. �
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Field-Theoretical Methods

R. Alicki

1 Introduction

Field-theoretical methods are important tools in quantum information. Photons – the
quanta of electromagnetic field – are the most frequently used carriers of quantum
information. Laser pulses described by coherent states of electromagnetic field are
the typical means of control for essentially all implementations of quantum infor-
mation processing. On the other hand, systems of interacting fermions in solids
provide promising implementations of quantum information processing. Last but
not least quantum fields are natural models of reservoirs producing noise, always
present in real systems. We restrict ourselves mainly to bosonic fields and begin
with the simplest example of a single degree of freedom – a quantum harmonic
oscillator. We describe it in terms of creation and annihilation operators, define
evolution in the Heisenberg picture, introduce unitary Weyl operators and coher-
ent states with their statistics and dynamics. Squeezed states as examples of the
“nonclassical states” are briefly presented also. Then we discuss the case of infinite
number of degrees of freedom quantizing a classical field in a finite volume. Par-
ticle number representation, Fock space, and local structure of quantum fields are
discussed. The interpretation in terms of particles (photons, phonons, etc.) and the
relation between spin and statistics are presented. The model of quantum bosonic
fields coupled to classical sources is studied and the origin of coherent states is
shown. Thermal states of non-interacting bosons and Bose–Einstein statistics are
briefly discussed. The mechanism leading to Bose–Einstein condensation is also
presented. The Gaussian states being generalizations of vacuum, squeezed vacuum,
and thermal states are introduced and discussed in the context of entanglement.
Finally, the second quantization of fermions is also outlined including Fermi–Dirac
statistics and thermal states for the free Fermi gas.

R. Alicki (B)
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2 The Quantum Harmonic Oscillator

A classical harmonic oscillator, described in terms of canonical position and
momentum variables q and p, has Hamiltonian (we set mass m = 1 for simplicity,
ω is an angular frequency)

H(q, p) = 1

2

(
p2 + ω2q2)

. (1)

The solution of the Hamilton’s equations of motion

dq

dt
= ∂

∂p
H(q, p) = p,

dp

dt
= − ∂

∂q
H(q, p) = −ω2q (2)

can be written in a convenient form using a complex amplitude z = ωq + ip

dz

dt
= −iωz , z(t) = z(0) exp(−iωt) . (3)

2.1 Heisenberg Canonical Quantization

The Heisenberg approach to quantization consists in replacing the classical vari-
ables q, p by non-commuting objects q̂, p̂ which can be represented by self-adjoint
operators acting on a Hilbert space H (“infinite Hermitian matrices”). They should
satisfy canonical commutation relation (CCR) in the form

[q̂, p̂] ≡ q̂ p̂ − p̂q̂ = ih̄ . (4)

The essential information concerning the physics of a quantum harmonic oscil-
lator can be extracted from the purely algebraic CCR. Define a properly normalized
quantum complex amplitude and its adjoint (Hermitian conjugation)

â = 1√
2h̄ω

(ωq̂ + i p̂) , â† = 1√
2h̄ω

(ωq̂ − i p̂) (5)

for which a CCR equivalent to (4) holds

[â, â†] = 1 . (6)

Then the quantum Hamiltonian Ĥ = 1
2

(
p̂2+ω2q̂2

)
can be expressed in terms of

â, â† as

Ĥ = h̄ω

(
â†â + 1

2

)
. (7)
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In the following we omit the irrelevant constant h̄ω/2 and use as Hamiltonian for
the harmonic oscillator the operator

Ĥo = h̄ω â†â . (8)

The self-adjoint, positive operator n̂ = â†â possesses a complete set of normal-
ized eigenvectors |n〉 satisfying

n̂|n〉 = n|n〉 , n = 0, 1, 2, . . . , 〈n|n′〉 = δnn′ . (9)

Indeed, CCR (6) implies n̂â = â(n̂− 1) (n̂â† = â†(n̂+ 1)) and therefore the vector
â|n〉 (â†|n〉) is an (unnormalized) eigenvector of n̂ corresponding to the eigenvalue
n − 1 (n + 1). Hence, the positivity of n̂ and the relation 〈n|â†â|n〉 = n imply that
n = 0, 1, 2, . . . and the following formulas:

â|n〉 = √
n|n − 1〉 , â†|n〉 = √

n + 1|n + 1〉 , n = 0, 1, 2, . . . , (10)

which justify the names annihilation, creation, and particle number operators for â,
â†, and n̂, respectively. Obviously, |n〉 are also eigenstates of the Hamiltonian (8)
corresponding to the eigenvalues En = h̄ωn. The ground state |0〉 of the quantum
harmonic oscillator is called the vacuum.

For any classical observable F(q, p) ≡ F(α∗, α) = ∑
k,� ck�(α

∗)kα�, where

α = 1√
2h̄ω

(ωq + ip) (11)

we can define its unique quantum counterpart by means of the normal ordering

F̂ =
∑

k,�

ck�
(
â†)k

â� . (12)

The time evolution in Heisenberg picture of â is given by

â(t) ≡ exp

(
i

h̄
Ĥo t

)
â exp

(
− i

h̄
Ĥo t

)
= e−iω t â . (13)

This formula, completely analogous to the classical expression for the amplitude
α (see (11) and (3)), can be obtained by differentiating both sides of (13) using
[Ĥo, â] = −i h̄ωâ. Therefore all quantum observables written in terms of the nor-
mal ordering (12) evolve in Heisenberg picture in a similar way to their classical
counterparts

F̂(t) =
∑

k,�

ck�e
iωt (k−�)(â†)k

â� . (14)
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2.2 The Weyl Unitary Operators

The position and momentum operators q̂, p̂ define a quantum phase space (plane)
with a natural notion of translation operators called displacement operators or Weyl
unitaries

Ŵ (α) = exp(αâ† − α∗â) . (15)

Indeed, using CCR one can easily prove (step 1 of Exercise 1) that

Ŵ (α) â Ŵ (α)† = â − α ; (16)

namely, position and momentum are shifted in such a way that α=(ωq+ip)/
√

2h̄ω.
A useful operator identity (step 2 of Exercise 1),

exp( Â) exp(B̂) = exp

(
1

2
[ Â, B̂]

)
exp( Â + B̂) , (17)

is valid if

[ Â, [ Â, B̂]] = [B̂, [ Â, B̂]] = 0 (18)

can be applied to prove the following group properties of the Weyl unitaries

Ŵ (0) = 1 , Ŵ (−α) = Ŵ (α)† , (19)

Ŵ (α)Ŵ (β) = exp(i Im{αβ∗})Ŵ (α + β) (20)

and the formal composition formulas

Ŵ (α) = exp(−|α|2/2) exp(αâ†) exp(−α∗â)

= exp(|α|2/2) exp(−α∗â) exp(αâ†) . (21)

2.3 Coherent States

Shifting the vacuum vector by Weyl unitaries, we obtain a family of coherent vectors
(states) or exponential vectors defined as

|α〉 = Ŵ (α)|0〉 , α ∈ C . (22)
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Coherent vectors possess the following properties:

• They are linearly independent but not orthogonal eigenvectors of the (non-self-
adjoint) operator â:

â|α〉 = α|α〉 , 〈α|β〉 = exp(−|α|2/2− |β|2/2+ α∗β) , (23)

and form an over-complete set, i.e.,

1 = 1

π

∫

C
d2α |α〉〈α| . (24)

• Their representation in terms of particle number eigenvectors reads

|α〉 = exp(−|α|2/2)
∞∑

n=0

αn

√
n! |n〉 , (25)

which implies a Poissonian probability distribution of the particle number

p(n) = |〈n|α〉|2 = exp(−|α|2) |α|
n

n! . (26)

• The mean value of a normally ordered operator F̂ (see (12)) reproduces the clas-
sical expression

〈α|F̂ |α〉 = F(α∗, α) =
∑

k,�

ck�(α
∗)kα� , (27)

and a coherent state evolves into a coherent one following the classical trajectory,

exp

(
− i

h̄
Ĥo t

)
|α〉 = |α(t)〉 , α(t) = e−iω tα . (28)

• The manifest Schrödinger position representation in terms of the Hilbert space
H = L2(R) with position and momentum operators given by

(
q̂ψ

)
(x) = xψ(x) ,

(
p̂ψ

)
(x) = −ih̄

d

dx
ψ(x) (29)

leads to the following wave function for the coherent state |α〉:

φα(x) = (π h̄)−1/4 exp
( i

h̄
p x

)
exp

(
− ω

2h̄
(x − q)2

)
. (30)
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The Fourier transform of φα(x) gives the momentum representation of the coher-
ent state

φ̃α(v) = (π h̄)−1/4 exp
( i

h̄
q (p − v)

)
exp

(
− (v − p)2

2ωh̄

)
. (31)

• Computing the corresponding Gaussian probability distributions |φα(x)|2 and
|φ̃α(v)|2 one can check that for coherent states the Heisenberg uncertainty rela-
tion Δq̂Δ p̂ ≥ h̄/2 becomes an equality in a symmetric way with respect to
position and momentum, i.e.,Δq̂ = √

h̄/2ω,Δ p̂ = √
h̄ω/2. Hence, the coherent

vector provides the best quantum analogue of the classical state localized at the
phase-space point (q, p).

Proof Using (10) we obtain

(â†)n|0〉 = √
n!|n〉 (32)

and then from (21) it follows that

|α〉 = Ŵ (α)|0〉 = exp(−|α|2/2) exp(αâ†)|0〉

= exp(−|α|2/2)
∞∑

n=0

αn

√
n! |n〉 . (33)

A straightforward computation based on formulas (25) and (10) yields (26), (23),
and (24). To prove (24) we use the parametrization α = ReiΘ , d2α = Rd R dΘ
and first integrate over &. Formula (14) follows directly from the eigenvector con-
dition (23) and the classical behavior of evolution (28) from (13). To prove (30) we
write condition (23) in the position representation (29) and obtain a linear differen-
tial equation

d

dx
ψ(x) = 1

h̄

(
i p − ω(x − q)

)
ψ(x) (34)

with normalized solution (30).

2.4 Glauber–Sudarshan Representation, Squeezed Coherent
Vectors

A mixed state of the quantum harmonic oscillator is given by a density matrix ρ̂.
One can prove that any ρ̂ can be written in terms of coherent vectors as

ρ̂ =
∫

C
d2α P(α)|α〉〈α|, (35)



Field-Theoretical Methods 157

where P(α) is a function or a singular distribution (e.g., for a coherent state ρ̂ =
|α0〉〈α0|, P(α) = δ(2)(α − α0)) called Glauber–Sudarshan P-function.

It is normalized (i.e.,
∫

C d2α P(α) = 1) but not necessarily positive. Quantum
(mixed) states described by non-positive P(α) are called non-classical in quantum
optics. For example, eigenstates of n̂, called often Fock states, ρ̂ = |n〉〈n|, are non-
classical. The name Gaussian wave packets is used for pure states given by Gaus-
sian wave functions in position (momentum) representation or equivalently eigen-
states of q̂ + ξ p̂, ξ ∈ C. It implies that the Heisenberg uncertainty relation becomes
an equality. The Gaussian wave functions are non-classical if Δq̂ <

√
h̄/2ω or

Δ p̂ <
√

h̄ω/2. The notion of Gaussian wave function is equivalent to the notion of
coherent squeezed vector |α, ξ 〉 which is defined by

|α, ξ 〉 = Ŵ (α)Ŝ(ξ)|0〉 , Ŝ(ξ) = exp

[
1

2

(
ξ∗â2 − ξ(â†)2

)]
, α, ξ ∈ C . (36)

The state |0, ξ 〉 is called squeezed vacuum. It is not difficult to show (step 4 of
Exercise 1) that the following relation holds:

Ŝ(ξ)†â Ŝ(ξ) = â cosh r − â†ei 2θ sinh r, (37)

where ξ = rei 2θ .
A clear geometrical picture of |α, ξ 〉 is given in terms of the quadrature operators

X̂ , Ŷ which are dimensionless “position” and “momentum” observables

X̂ = 1√
2

(
â + â†)

, Ŷ = 1

i
√

2

(
â − â†)

(38)

satisfying [X̂ , Ŷ ] = i. Using directly definitions (36), (38), and equation (37) one
obtains (see Exercises step 5 of 1) the mean values

〈X̂〉 = √
2Reα , 〈Ŷ 〉 = √

2Imα (39)

and dispersions

σ 2(X̂) ≡ 〈X̂2〉 − 〈X̂〉2 = 1

2
e−2r , σ 2(Ŷ ) ≡ 〈Ŷ 2〉 − 〈Ŷ 〉2 = 1

2
e2r , (40)

where the shorthand notation 〈 Â〉means 〈α, ξ | Â|α, ξ 〉. For a large r the fluctuations
of X̂ are highly reduced (“squeezed”) at the expense of increased fluctuations of Ŷ ,
what explains the name of the vectors |α, ξ 〉.

The harmonic oscillator’s dynamics preserves the form of squeezed coherent vec-
tors (step 6 of Exercise 1):

exp
(
− i

h̄
Ĥo t

)
|α, ξ 〉 = |e−iω tα , e−i 2ω t ξ 〉 . (41)
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Remark 1

1. In quantum optics a quantum harmonic oscillator provides a good model for a
single mode of radiation confined in an optical cavity (q and p variables can be
seen as the amplitudes of the magnetic and electric fields, respectively). If this
cavity is a part of a laser working in the regime of laser action, then the coherent
states with their Poisson statistics perfectly describe the states of light. On the
other hand, below the threshold of laser action the thermal states of light appear
(see Sect. 4.3).

2. There has been a whole variety of successful demonstrations of coherent and
squeezed states. Besides the experiments with light fields using lasers and non-
linear optics the coherent and squeezed states have also been realized using
trapped ions, phonon states in crystal lattices, or atom ensembles.

Exercise 1

1. Prove formula (16).
Hint: Compute the derivative of the operator-valued function

Â(t) = Ŵ (tα) â Ŵ (tα)† (42)

and integrate the obtained differential equation up to t = 1.
2. Prove formula (17).

Hint: Compute the derivative of the operator-valued function

Ĝ(t) = exp(t Â) exp(t B̂) exp(−t ( Â + B̂)) (43)

and integrate the obtained differential equation up to t = 1.
3. Using (17) and (18) prove (20) and (21).
4. Prove relation (37) .

Hint: Compute b̂z = Ŝ(ξ) â Ŝ(ξ)† using the operator identity

e Â B̂ e− Â = B̂+ 1

1!
[

Â , B̂
]
+ 1

2!
[

Â ,
[

Â , B̂
]]
+ 1

3!
[

Â ,
[

Â ,
[

Â , B̂
]]]

+· · · .
(44)

5. Prove formulas (39) and (40).
6. Prove (41) using the following identity valid for any function F and any opera-

tors Â, B̂:

e Â F(B̂) e− Â = F(e Â B̂ e− Â) . (45)
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3 Quantum Bosonic Fields

The theory of quantum bosonic field allows for two interpretations. The first treats
it as a quantization of the macroscopic classical field theory like classical electrody-
namics or the theory of acoustic waves in solids. The second interprets it as a theory
of many-body systems consisting of quantum particles, each of which described
by the suitable quantum wave equation (“second quantization”). In the latter case
Maxwell equations are treated as the Schrödinger equation for a single photon.

3.1 Quantization of Classical Fields

Classical field theory is a convenient formalism describing macroscopic properties
of either fundamental interactions (electromagnetic, gravitational, etc.) or providing
simplified continuous models of many-body systems (acoustic waves). By a classi-
cal field we mean a (generally multi-component) function φ(x; t) satisfying some
linear wave equation which we do not specify here.

For mathematical simplicity we consider a real scalar field confined in a finite
region Ω of the one-, two-, or three-dimensional space with specified boundary
conditions. The particular (complex-valued) solutions of the wave equation with
periodic time dependence can be written as

uk(x, t) = e−iω(k)t uk(x) , (46)

where k represents a certain multi-index labeling the modes uk . Modes satisfy
orthogonality conditions

∫

Ω

dx u∗k(x)u�(x) = ckδk� (47)

with yet unspecified normalization constants ck .
According to the superposition principle, any solution of the wave equation can

be written in terms of modes and complex amplitudes αk

f (x, t) =
∑

k

(
αk(t)uk(x)+ α∗k (t)u∗k(x)

)
, (48)

where

αk(t) = αke−iω(k)t . (49)

The linearity of wave equations suggests a quadratic dependence of the correspond-
ing energy. Indeed, for all examples the energy of the field f (x, t) is given by a
quadratic form

E( f ) =
∫

Ω

dr x f (x, t)D̂ f (x, t) , (50)
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where D̂ is typically a differential operator whose form depends on the wave equa-
tion. Moreover, the modes uk are eigenfunctions of D̂, i.e.,

D̂uk = λkuk . (51)

Choosing the normalization constants as

ck =
√

h̄ωk

2λk
, (52)

we can write energy (50) in terms of the complex amplitudes as

E( f ) =
∑

k

h̄ωk α
∗
kαk . (53)

If we replace the complex amplitudes αk and α∗k by a set of independent annihi-

lation and creation operators âk and â†
k satisfying a general form of CCR

[âk, â
†
� ] = δk� , [âk, â�] = [â†

k , â
†
k ] = 0, (54)

we obtain the quantum Hamiltonian for the field in the bounded region

ĤF =
∑

k

h̄ωk â†
k âk (55)

and the oscillations of the quantum amplitudes in the Heisenberg picture

âk(t) = exp
( i

h̄
ĤF t

)
âk exp

(
− i

h̄
ĤF t

)
= e−iωk t âk . (56)

Expressions (55) and (56), when compared with (7) and (13), show that the quantum
field in a finite space region is equivalent to a (possibly infinite) family of indepen-
dent quantum harmonic oscillators. The quantum analogue of the classical field is
now the operator-valued function

f̂ (x, t) =
∑

k

(
âke−iω(k)t uk(x)+ â†

k eiω(k)t u∗k(x)
)
. (57)

Remark 2

1. We have used a notation suitable for a scalar field f . For a multi-component
field we can treat x as a combined continuous–discrete variable x = (x, μ) with
x ∈ R� and μ = 1, 2, . . . ,M . In this case the integral

∫
dx means

∑
μ

∫
d�x.

2. The quantization procedure which was presented here can be made more rigor-
ous using the canonical formalism of classical field theory [2, 6].
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3.2 Fock Space

The Hilbert space for the quantized field can be formally treated as the Hilbert space
of a family of harmonic oscillators, i.e., a tensor product of single-oscillator Hilbert
spaces

⊗
k Hk . For an infinite number of modes this is a subtle mathematical prob-

lem and it is convenient to construct explicitly the appropriate Hilbert space, called
Fock space and denoted by F .

The Fock space is by definition spanned by a countable family of vectors which
form an orthonormal basis of F denoted by |{nk}〉 ≡ |nk1 , nk2 , . . . , nkm 〉, where
{nk} is an arbitrary sequence of numbers nk = 0, 1, 2, . . . labeled by the indices
{k} and with only a finite number of non-zero elements explicitly denoted by
nk1 , nk2 , . . . , nkm . We interpret such a vector as a quantum state of the field for
which we observe nk particles (excitations) corresponding to the mode uk . In this
picture, called particle number representation, the modes uk span the single-particle
Hilbert space H1 and the particles are obviously indistinguishable. The state |0〉
with all nk = 0 is again called the vacuum. The formula

|{nk}〉 ≡ |nk1 , nk2 , . . . , nkm 〉 =
(
â†

k1

)nk1

√
nk1 !

(
â†

k2

)nk2

√
nk2 !

· · ·
(
â†

km

)nkm

√
nkm !

|0〉 , (58)

motivated by (32), can be used as a consistent definition of the creation operators
â†

k which increase by one the number of particles in the state (mode) uk . Computing
the adjoint operator âk , one can easily obtain its action on the basis vectors

âk | . . . , nk, . . .〉 = √
nk | . . . , nk − 1, . . .〉 . (59)

It is also not difficult to check that such operators satisfy CCR (54) and that the
states |{nk}〉 are joint eigenvectors for the particle number operators n̂k = â†

k âk

n̂k |{nk}〉 = nk |{nk}〉 . (60)

For any N = 0, 1, 2, . . . we define a subspace of F , denoted by HN , spanned by
the vectors |{nk}〉 satisfying

∑
k nk = N . Then we can decompose the Fock space

into a direct sum

F =
∞⊕

N=0

HN . (61)

The subspace H0 is a one-dimensional ray generated by the vacuum |0〉. The single-
particle Hilbert space H1 ≡ H is a complex manifold spanned by the vectors â†

k |0〉
and can be identified with a complex Hilbert space containing the linear combina-
tions of the properly normalized modes (47) and (52)
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φ(x) =
∑

k

φkek(x) , ek(x) =
√

2λk

h̄ωk
uk(x), (62)

with a scalar product satisfying

〈φ|ψ〉 =
∫

Ω

dxφ∗(x)ψ(x) =
∑

k

φ∗kψk . (63)

The N -particle Hilbert space HN is spanned by the vectors which can be identi-
fied with the formal products uk1 ◦ uk2 ◦ · · · ◦ ukN (the same mode can appear many
times and the order of multiplication is irrelevant!). Therefore, the structure of HN

is identical to that of the N -fold symmetric tensor product and we can write

HN = 1

N !
∑

π

Sπ
(
H⊗N )

. (64)

The operator Sπ corresponds to a permutation of particles and acts on the product
state as follows:

Sπφ1(x1)φ2(x2) · · ·φN (xN ) = φπ(1)(x1)φπ(2)(x2) · · ·φπ(N )(xN ), (65)

and the sum in (64) is taken over all permutations of the set {1, 2, ..., N }.
The Fock space F can be considered as an “exponential" of the underlying

single-particle Hilbert space H

F(H) =
∞⊕

N=0

1

N !
∑

π

Sπ
(
H⊗N )

. (66)

Remark 3 We use the name “field” for both the true time-dependent fields (48) and
the single-particle wave functions (62). However, the complexification of the former
is isomorphic to the later and even isometric if the proper scalar products are defined.

3.3 Local Structure of Quantum Fields

It is not difficult to check by comparing orthonormal bases of the Hilbert spaces
appearing on both sides that the following relation holds:

F(H⊕K) = F(H)⊗ F(K) . (67)

The single-particle Hilbert space H possesses a natural local structure due to the x-
dependence of its elements (complex wave functions) φ(x) (see (62)). If we decom-
pose a space region Ω into disjoint subsets Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωk any wave
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function can be written as an orthogonal sum of wave functions localized in the Ω j

and this generates a corresponding decomposition of the Hilbert space:

φ(x) = φ1(x)⊕ φ2(x)⊕ · · · ⊕ φk(x) (⇒ H = K1 ⊕K2 ⊕ · · · ⊕Kk . (68)

Then from (67) we obtain the following decomposition of the Fock space:

F(H) = F(K1)⊗ F(K2)⊗ · · · ⊗ F(Kk) . (69)

Physically, the above decomposition means that the quantum field localized in a cer-
tain subset ofΩ is a physical subsystem of the total system which is localized inΩ .

The local structure of the above construction can be expressed in terms of observ-
ables. For a wave function (62) (often called test function) we can define the smeared
annihilation and creation operators

â(φ) =
∑

k

φ∗k âk , â†(φ) =
∑

k

φk â†
k . (70)

They satisfy another form of CCR

[â(φ), â†(ψ)] = 〈φ|ψ〉 , [â(φ), â(ψ)] = [â†(φ), â†(ψ)] = 0 . (71)

Taking products, sums (and proper limits) of operators â(φ) and â†(ψ) with
different test functions we obtain all physically relevant observables for the quantum
field. In particular, if we restrict ourselves to test functions with support in a given
subset Λ ⊂ Ω we generate all local observables associated with the space region
Λ. Due to (71) two observables localized in disjoint subsets of Ω commute.

The important class of operators on the Fock space describing additive quantum
observables is defined as follows. For a single-particle observable which can be
represented as

Â =
∑

j

|ψ j 〉〈φ j | (72)

we define its second quantized counterpart acting on the Fock space

ÂF =
∑

j

â†(ψ j )â(φ j ) . (73)

A simple calculation of the action of ÂF on the basic vectors |{nk}〉 using defini-
tion (70) shows that the N -particle Hilbert subspaces are invariant under ÂF and that

ÂF|HN =
n∑

k=1

1⊗ · · · ⊗ Â︸ ︷︷ ︸
k

⊗ · · · ⊗ 1 (74)



164 R. Alicki

acts as a sum of single-particle operators. Important single-particle observables
are the Hamiltonian ĤF, the particle number at the mode n̂k , and the total parti-
cle number N̂ = ∑

k n̂k which are second quantizations of the operators Ĥo =∑
k h̄ωk |ek〉〈ek |, P̂k = |ek〉〈ek |, and 1, respectively.
By continuity arguments, one can extend the second quantization rule (73) to

more general single-particle operators than (72). For example, if D̂ is a differential
operator acting on H we can write

D̂F =
∫

Ω

dx ψ̂†(x)D̂ψ̂(x), (75)

where ψ̂(x) and ψ̂†(x) are local annihilation and creation fields defined as

ψ̂(x) =
∑

k

ek(x)âk , ψ̂†(x) =
∑

k

e∗k (x)â
†
k , (76)

satisfying yet another version of CCR

[ψ̂(x), ψ̂†(y)] = δ(x− y) , [ψ̂(x), ψ̂(y)] = [ψ̂†(x), ψ̂†(y)] = 0 . (77)

3.4 Photons, Phonons, Spin, and Statistics

The most important example of a quantized field is an electromagnetic field in vac-
uum. As classical field equations we choose Maxwell’s equations for the electric
and magnetic fields E(x, t),B(x, t) which can be written in a compact form using a
complex vector field Z(x, t) = E(x, t) + i B(x, t)

∇ · Z = 0 ,
∂Z
∂t

= −i c∇ × Z . (78)

Introducing a box L3 and periodic boundary conditions, we can find the solutions
of (78) in terms of plane waves

Z(x, t) = Z0 exp{i(k · x− ω(k) t)} , k · Z0 = 0 , ick× Z0 = ω(k)Z0 . (79)

Here k takes on the discrete values k = ( 2πm1
L , 2πm2

L ,
2πm3

L ), m� = 0,±1,±2, . . .,
and we have the dispersion law ω(k) = c|k|. The electric field, the magnetic field,
and the wave vector k are mutually orthogonal; hence we have two possible polar-
izations of the plane wave denoted by an index λ = ±1. The energy is given by the
quadratic form

E = 1

8π

∫
dx (E2 + B2) = 1

8π

∫
dx Z · Z (80)
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and therefore we can apply the quantization procedure of Sect. 2.1 by introduc-
ing annihilation and creation operators âk,λ, â

†
k,λ for plane waves with given wave

vectors and polarizations. Hence we obtain the following parametrization of the
quantized electric field:

Ê(x) = i
∑

k,λ

(2π h̄c|k|
L3

)1/2
ek,λ

(
eik·xâk,λ − e−ik·xâ†

k,λ

)
. (81)

To quantize the oscillations of interacting atoms, ions, or molecules in a solid
state we associate with any normal oscillation mode described by the wave vector
k and the index α corresponding to the possible types of oscillations (three polar-
izations of acoustic modes, different branches of optical modes) annihilation and
creation operators âk,α and â†

k,α and a dispersion law ω(k, α). In contrast to elec-
tromagnetic waves, the number of modes is finite and proportional to the volume.
The (quasi) particles corresponding to this picture are called phonons.

The multi-particle structure of the Fock space (61) suggests its direct applica-
tion to the description of many-body systems consisting of particles which are not
associated with macroscopic classical fields in an obvious way. However, it fol-
lows from relativistic quantum field theory that only particles with an integer spin
S = 0, 1, 2, . . . called bosons can be described by the formalism of above (e.g.,
photons, pions, W,Z-bosons). Particles with a spin S = 1/2, 3/2, . . . called fermions
(e.g., electrons, protons, neutrons,) must satisfy Pauli’s exclusion principle which
implies that the possible eigenvalues of the particle number operators n̂k should be
equal to 0 or 1. This can be achieved with a second quantization procedure involving
canonical anti-commutation relations instead of CCR (see Sect. 5). The relation
between spin and statistics is valid not only for elementary particles but also for
composed ones like nuclei or atoms with the spin replaced by the total quantum
angular momentum with respect to the particle’s mass center (e.g., He4 atoms are
bosons, while He3 are fermions). However, in this case super-selection rules forbid-
ding superpositions of states with different total particle numbers must be taken into
account.

Exercise 2

1. Prove formula (67).
Hint: Choose bases in H and K and construct the corresponding bases of F(H),
F(K), and F(H)⊗ F(K).

2. Using (76) prove (77).
3. Using (79) and (81) compute the quantized magnetic field B̂(x). Check that the

quantized formula for the energy 1
8π

∫
(Ê2 + B̂2)dx reproduces the Hamiltonian

ĤF = ∑
k,λ h̄ω(k) â†

k,λâk,λ up to an irrelevant constant.
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4 Coherent and Thermal States for Bosons

We discuss now two types of states for the bosonic field which can be created either
by the interaction with classical sources (coherent states) or by a weak coupling of
the system to the external heat bath (thermal states).

4.1 Weyl Unitaries and Coherent States

As a quantum bosonic field is equivalent to a set of independent quantum harmonic
oscillators, all mathematical tools used in the case of a single oscillator can be eas-
ily generalized. In particular, the Weyl unitaries, now defined in terms of smeared
operators â(φ) and â†(φ) as

Ŵ (φ) = exp
(
â†(φ)− â(φ)

)
, (82)

satisfy the group properties

Ŵ (0) = 1 , Ŵ (−φ) = Ŵ (φ)† , (83)

Ŵ (φ) Ŵ (ψ) = exp
(

iIm〈φ|ψ〉
)

Ŵ (φ + ψ) (84)

and the formal composition formulas

Ŵ (φ) = exp
(
− 1

2
〈φ|φ〉

)
exp

(
â†(φ)

)
exp

(
− â(φ)

)

= exp
(1

2
〈φ|φ〉

)
exp

(
â(φ)

)
exp

(
− â†(φ)

)
. (85)

Similar to (16) Weyl unitaries generate shifts of the field

Ŵ (φ) â(ψ) Ŵ (φ)† = â(ψ)− φ (86)

and a family of coherent vectors or exponential vectors labeled by the elements φ
of the single-particle Hilbert space (fields)

|[φ]〉 = Ŵ (φ) |0〉 , φ ∈ H . (87)

We use the notation |[φ]〉 to distinguish coherent states from the elements φ of H
written in Dirac notation as |φ〉.

4.1.1 Properties of Coherent Vectors

1. Representation in terms of N -particle states

|[φ]〉 = exp
(
− 1

2
〈φ|φ〉

) ∞∑

N=0

1√
N ! φ ⊗ φ ⊗ · · · ⊗ φ︸ ︷︷ ︸

N

. (88)
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2. Eigenvector condition

â(ψ) |[φ]〉 = 〈ψ |φ〉 |[φ]〉 . (89)

3. Scalar product

〈[φ]|[ψ]〉 = exp
{
− 1

2

(
〈φ|φ〉 + 〈ψ |φ〉 − 2〈ψ |φ〉

)}
. (90)

4. The mean value of a normally ordered local operator F̂ = F
(
ψ̂†(x); ψ̂(x)

)

(see (12)) reproduces the classical expression

〈[φ]|F̂ |[φ]〉 = F
(
φ∗(x), φ(x)

)
. (91)

5. Coherent states evolve into coherent ones and follow classical solutions, i.e.,

exp
(
− i

h̄
ĤF t

)
|[φ]〉 = |[φt ]〉 , φt = exp

(
− i

h̄
Ĥo t

)
φ . (92)

Coherent states in quantum electrodynamics perfectly describe coherent radia-
tion emitted, for example, by macroscopic antennae in the case of radio-waves or
masers and lasers in microwave and optical regimes, respectively.

4.2 Bosonic Fields with Classical Sources

In the previous sections we have discussed the free dynamics of the quantum field
governed by the Hamiltonian ĤF (55). The simplest model describing the interac-
tion of the field with other physical systems involves a classical external source
χ(x, t) which can be treated as an element of H denoted by |χt 〉. The Hamiltonian
is given by

Ĥχ
F (t) = ĤF + ih̄

(
â(χt )− â†(χt )

)
. (93)

Our aim is to compute the time evolution of the coherent state under the dynam-
ics governed by (93). We first compute the form of the unitary propagator in the
interaction picture (T denotes time-ordering operation)

V̂ (t) = exp
{ i

h̄
ĤF t

}
T exp

{
− i

h̄

∫ t

0
Ĥχ

F (s) ds
}
, (94)

where the time ordering means that in the series expansion of the time-ordered expo-
nential the kth power has the form

∫ t

0
ds1

∫ s1

0
ds2 · · ·

∫ sk−1

0
dsk Ĥχ

F (s1) Ĥχ
F (s2) · · · Ĥχ

F (sk) . (95)
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The unitary operator V̂ (t) satisfies the following differential equation:

d

dt
V̂ (t) = exp

{ i

h̄
ĤFt

} (
â(χt )− â†(χt )

)
exp

{ i

h̄
ĤFt

}
V̂ (t)

=
(

â(χ̃t )− â†(χ̃t )
)

V̂ (t) , (96)

where

χ̃t = exp
{
− i

h̄
Ĥo t

}
χt . (97)

Equation (96) can be solved in terms of the ordered exponential

V̂ (t) = lim
N→∞ exp

(
(â(χ̃tN )− â†(χ̃tN ))Δt

)

· · · exp
(
(â(χ̃t1)− â†(χ̃t1))Δt

)
exp

(
(â(χ̃0)− â†(χ̃0))Δt

)
, (98)

where't = t/N and tk = t (k/N ). The right-hand side of (98) is a product of Weyl
unitaries (82) and hence by (84) also a Weyl operator (the phase factor disappears
in the limit N →∞)

V̂ (t) = Ŵ
( ∫ t

0
χ̃s ds

)
. (99)

Now we can compute the evolution of an initially coherent state |[ψ0]〉

T exp
{
− i

h̄

∫ t

0
Ĥχ

F (s) ds
}
|[ψ0]〉 = exp

{
− i

h̄
ĤFt

}
V̂ (t) |[ψ0]〉

= exp
{

iIm
∫ t

0
〈χ̃s |ψ0〉

}
|[ψt ]〉 , (100)

where

ψt = exp
{
− i

h̄
Ĥo t

}
ψ0 +

∫ t

0
exp

{
− i

h̄
Ĥo(t − s)

}
χs ds . (101)

It follows that a coherent state evolves into another coherent state (with a certain
phase factor) which is determined by a field ψt satisfying a suitable equation with
respect to the external source χt

d

dt
ψt = − i

h̄
Ĥoψt + χt . (102)

In particular, by a proper choice of the classical source we can generate an arbitrary
coherent state from the vacuum, i.e., the coherent state with ψ0 = 0.
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Remark 4 All the formulas and proofs of above, involving smeared operators â(φ)
and â†(φ), are valid in the infinite volume limit, i.e., for test functions defined on
the whole R�.

4.3 Thermal States of Non-interacting Bosons

From the general Boltzmann principle: At thermal equilibrium the probability
of finding a physical system in a micro-state with energy E is proportional to
exp(−E/kBT ); it follows that the thermal state at the temperature T of a quan-
tum system with Hamiltonian Ĥ is described by the density matrix (canonical
ensemble)

ρ̂β = Z−1(β) exp(−β Ĥ) , β = 1

kBT
, Z(β) = Tr exp(−β Ĥ) . (103)

For a single harmonic oscillator with Ĥo = h̄ωn̂, we can easily compute the
normalization constant (partition sum) Z(β) and the mean particle number n

Z(β) = Tr exp(−β Ĥo) =
∞∑

n=0

e−βh̄ωn = 1

1− e−βh̄ω
, (104)

n = − 1

h̄ω

∂

∂β
log Z(β) = 1

eβh̄ω − 1
. (105)

For non-interacting bosons the Hamiltonian ĤF = ∑
k h̄ωk n̂k should be modi-

fied to

Ĥμ
F = ĤF − μN̂ =

∑

k

(εk − μ)n̂k , εk = h̄ωk, (106)

where the chemical potential μ is a new parameter which determines the average
number of particles in the system (for massless particles we put μ = 0). The thermal
equilibrium state is given by a density matrix (grand canonical ensemble)

ρ̂β,μ = Z−1(β, μ) exp(−β Ĥμ
F ) , Z(β, μ) = Tr exp(−β Ĥμ

F ), (107)

which is equivalent to a tensor product of properly parametrized single harmonic
oscillator density matrices. Hence, the average particle number in the single-particle
state (mode) ek is given by the Bose–Einstein statistics

nk = 1

eβ(εk−μ) − 1
, (108)
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and the von Neumann entropy reads

S(ρ̂β,μ) = −kBTr
(
ρ̂β,μ log ρ̂β,μ

)

= kB

∑

k

(
(1+ nk) log(1+ nk)− nk log nk

)
. (109)

4.4 Bose–Einstein Condensation

For a large number of bosons the mean number of particles in the equilibrium state
(see (108))

N ≡
∑

k

nk =
∑

k

1

eβ(εk−μ) − 1
(110)

can be identified with an actual number of particles in the sample. The chemi-
cal potential μ ≤ 0 depends on N and β. For a fixed N the character of its
β-dependence can be extracted from the identity 0 = dN = (∂N/∂μ)dμ +
(∂N/∂β)dβ. By a direct computation the following inequality follows

dμ

dβ
≥ 0 or

dμ

dT
≤ 0 . (111)

Another useful inequality reads

for μ = 0 and εk > 0 ,
dnk

dT
> 0 . (112)

Many models of bosonic systems, including a non-relativistic gas in a three-
dimensional confining potential, exhibit a critical temperature Tc for which μ(Tc),
according to (111), approaches zero when T ↘ Tc.1 Below this temperature the
chemical potential remains equal to zero and therefore for T <Tc according to (112)

N ′ =
∑

k �=0

1

eεk/kT − 1
< N . (113)

Notice that in the sum above the ground state (typically non-degenerate) with ε0 -
0 is omitted because the ground state occupation number N0 = 1/(eε0/kT − 1)
becomes singular and can be determined only from the relation N0 + N ′ = N . The
fraction of bosons occupying a ground state below the critical temperature form
a Bose–Einstein condensate and this phenomenon is a unique example of phase
transition for noninteracting particle systems. The fact that a macroscopic number
of particles can occupy a single quantum state leads to many collective/coherent

1 The presented arguments become sharp in the thermodynamic limit.
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phenomena which are intensively studied in the last decade, both experimentally
and theoretically, in the context of ultracold gases [10].

4.5 Gaussian States and Entanglement

The vacuum, squeezed vacuum, and the thermal state for a bosonic field are exam-
ples of a more general family of (zero-mean) Gaussian states. We restrict our-
selves to a finite mode case with {âk, â

†
k , k = 1, 2, ..., K } and introduce quadrature

operators X̂2k−1 = 1√
2

(
âk + â†

k

)
, X̂2k = 1

i
√

2

(
âk − â†

k

)
satisfying commutation

relations

[X̂ j , X̂k] = i J jk, (114)

where J = [J jk] is the standard symplectic matrix.
Define a new parametrization of the Weyl unitaries

Ŵ (x) = exp
{

i
2K∑

j=1

x j X̂ j

}
, x = (x1, x2, ..., x2K ), x j ∈ R . (115)

A state given by a density matrix ρ̂G is called Gaussian if

Tr
(
ρ̂GŴ (x)

) = exp

{
−1

2
xTGx

}
. (116)

Here G is a real symmetric correlation matrix given by

G = [Gmn] , Gmn = Tr
(
ρ̂G(X̂m X̂n + X̂n X̂m)

)
, (117)

satisfying a necessary and sufficient condition

G + i J ≥ 0 . (118)

Consider a bipartite system which consists of two oscillators and a Gaussian state
with a correlation matrix G11 = A,G22 = B,G12 = C. The partial transposition
used to detect bipartite-entangled states of two finite-level systems (see chapter
“Bipartite Quantum Entanglement”, Sect. 3) is realized by a time reversal anti-
unitary map (X̂1, X̂2)→ (X̂1,−X̂2). Despite the infinite dimensionality of the two
oscillators’ Hilbert space, it turns out that transposition is an exhaustive entangle-
ment witness for bipartite Gaussian states. Indeed, the separability criterion can be
expressed by the single inequality [1]

detA detB+
(1

4
+ |detC|

)2 − det(AJCJBJCTJ) ≥ 1

4
(detA+ detB) . (119)
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Exercise 3

1. Using (17), (18), and (71) prove formulas (83), (84), (85), and (86) and (88),
(89), (90), (91), and (92).

2. Check that (101) is a solution of (102).
3. Compute the von Neumann entropy for the thermal state of a single harmonic

oscillator in terms of n.
4. Prove inequalities (111) and (112) .

5 Second Quantization of Fermions

In contrast to bosons, due to the Pauli’s exclusion principle, fermions cannot macro-
scopically occupy a single quantum state and therefore a wave function of a fermion
has no classical meaning of a measurable macroscopic field. However, the descrip-
tion of many fermion systems in terms of the second quantization is very similar to
the bosonic one. Choosing again a certain collection of modes {uk}, being solutions
of a single-fermion Schrödinger equation, we can define the corresponding anni-
hilation and creation operators ĉk, ĉ

†
k . The new particle number operators n̂k must

have only 0, 1 eigenvalues that can be achieved imposing the following canonical
anti-commutation relations (CAR):

{ĉk, ĉ
†
�} = δk� , {ĉk, ĉ�} = {ĉ†

k , ĉ
†
�} = 0, (120)

where { Â, B̂} ≡ Â B̂ + B̂ Â. Therefore (step 1 of Exercise 2), the particle number
operators satisfy the relations

n̂2
k = n̂k , [n̂k, n̂�] = 0 . (121)

5.1 Fock Space and Observables

The minimal Hilbert space, called fermionic Fock space and denoted by Fa , which
supports the structure of operators (120, 121) is spanned by the Fock vectors being
the joint eigenvectors of all n̂k

n̂k |{nk}〉 = nk |{nk}〉 , nk = 0, 1 . (122)

Similar to (61), for any N = 0, 1, 2, . . . we define a subspace of Fa , denoted by
Ha

N , spanned by the vectors |{nk}〉 satisfying
∑

k nk = N . Then we can decompose
the Fock space into a direct sum

Fa =
∞⊕

N=0

Ha
N , (123)

while now Ha
N is an antisymmetric tensor product spanned by the totally

anti-symmetrized formal products uk1 ◦ uk2 ◦ · · · ◦ ukN (now the same mode can
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appear only once!). The subspace Ha
0 is a one-dimensional ray generated by the

vacuum |0〉 and the single-particle Hilbert space Ha
1 ≡ H is spanned by the modes

uk . The local structure is described by the relation identical to (67). The formalism
of local quantum fields, smeared fields, extension to infinite spaces, etc., is similar
to the bosonic case presented in Sect. 3.3.

Operators for many fermion systems are generated by all ĉk, ĉ
†
k and form the

CAR algebra. However, due to the fact that the single-fermion wave functions are
not measurable, only the observables which are even possess physical meaning.
Important additive (single-particle) observables are the free Hamiltonian and the
total number of particles

ĤF =
∑

k

εk ĉ†
k ĉk , N̂ =

∑

k

ĉ†
k ĉk . (124)

From (122) it follows that in the case of finite number of modes K the Fock space
Fa is 2K -dimensional and, moreover, the CAR algebra coincides with the whole
algebra of 2K ×2K complex matrices, i.e., is isomorphic to the algebra of K qubits.
The manifest form of this isomorphism is given in terms of the Jordan–Wigner
transformation

ĉk ≡ σz ⊗ · · · ⊗ σz︸ ︷︷ ︸
k−1

⊗σ− ⊗ 1⊗ · · · ⊗ 1 , k = 1, 2, . . . , K , (125)

with σ− = (σx − i σy)/2 (see step 4 of Exercise 2). Here, σx , σy , and σz denote the
Pauli matrices.

5.2 Thermal States of Non-interacting Fermions

Following Sect. 4.3 we can apply the grand canonical ensemble (107) to non-
interacting fermions with the Hamiltonian ĤF given by (124). Computing the parti-
tion sum in a Fock basis (122), one obtains

Z(β, μ) =
∑

{nk }
e
−β∑

k

(
nk (εk−μ)

)

=
∏

k

(
1+ e−β(εk−μ)

)
. (126)

This implies the following expression for the average particle number in the single-
particle state (mode) (Fermi–Dirac statistics):

nk = 1

eβ(εk−μ) + 1
, (127)

whence the corresponding von Neumann entropy (compare (108) and (109)) reads

S(ρ̂β,μ) = −kB

∑

k

(
nk log nk + (1− nk) log(1− nk)

)
(128)
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and gives a clear interpretation in terms of particle and hole occupation numbers nk

and 1− nk , respectively.

Exercise 4

1. Prove relations (121) using (120).
2. Prove formula (126) for the fermionic partition sum.
3. Derive the Fermi–Dirac statistics from (126).
4. Check CAR relations (120) for the operators defined by (125).

6 Further Reading

Section 2: The basic properties and applications of coherent vectors, squeezed states,
and Glauber representation are presented in [4] in the context of quantum optics.
More mathematical approach with important generalizations can be found in [9].

Section 3: For introduction to quantum field theory see [7, 6]; the more advanced
material, relevant for quantum electrodynamics, can be found in [5].

Section 4: Coherent states for electromagnetic field and their origin are discussed in
[5]. For a mathematically rigorous theory of thermal states including systems in the
thermodynamic limit see [3]. A simple approach to Bose–Einstein condensation can
be found in [8]. Application of Gaussian states in quantum information is studied
in [1].

Section 5: Basic information about fermionic systems can be found in [2]; for more
advanced material see [3].
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Quantum Entropy and Information

Nilanjana Datta

1 Introduction

As seen in chapter “Classical Information Theory”, classical information theory is
the mathematical theory of information-processing tasks such as storage and trans-
mission of information. It was born out of a seminal paper by Claude Shannon in
1948.

Two fundamental tasks in classical information theory are the storage and trans-
mission of information. For efficient use of the resources available for storage of
information, it is essential to compress data.1 This is known as source coding and
involves encoding the messages emitted by an information source, by exploiting
redundancies which are typically present in them. As regards transmission of infor-
mation, the biggest hurdle that one faces is the presence of noise in a communi-
cations channel, which leads to a distortion of messages transmitted through it. In
order to counteract its effect, one needs to add redundancy to the messages before
transmitting them. This is known as channel coding. The idea central to both source
and channel coding is to encode messages in a manner which allows them to be
later decoded with an arbitrarily low probability of error, while optimizing the rate,
i.e., the ratio between the sizes of the message and its corresponding codeword
(see Sect. 3 for details). Note that there is a duality between the problems of data
compression and data transmission. In the first case one exploits the redundancy
present in the messages to compress the data, whereas in the second case one adds
redundancy in a controlled manner to combat errors introduced by the noise in the
channel.

Classical information theory relies on the assumption that the states of the phys-
ical system, in which information is encoded, can be perfectly distinguished, per-
fectly copied, and measured with arbitrary precision. For most practical applications

N. Datta (B)
Statistical Laboratory, DPMMS, University of Cambridge, Cambridge, UK,
n.datta@statslab.cam.ac.uk

1 In this chapter, the words data, information, signals and outputs of an information source will be
used interchangeably.
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of this theory, the laws of classical physics provide a sufficiently close approxima-
tion to the system’s behavior and hence the above assumptions are indeed satisfied.
However, in order to investigate the fundamental limits which are imposed by the
basic laws of physics on our ability to encode, decode, process, and transmit infor-
mation, we need to go beyond the ideas of classical physics.

Quantum information theory generalizes classical information theory to systems
which are governed by the laws of quantum mechanics. It deals with how the
quantum mechanical properties of physical systems can be exploited to obtain the
limits of efficient storage and transmission of information. The underlying quantum
mechanics leads to important differences between the two theories, at times yielding
distinctively new features, which have no classical analogues [8, 10].

In this chapter, we will address some key aspects of the problems of data com-
pression and data transmission in quantum information theory. The main topics that
will be covered are Schumacher compression, quantum channels, the Holevo bound,
and the transmission of classical information through a quantum channel.

2 Preliminaries

In quantum information processing systems, information is stored in the quantum
states of a physical system. In the following, we will only consider systems with
finite-dimensional Hilbert spaces. The fundamental unit of quantum information is
called the “quantum bit” or qubit. A qubit is a vector in a 2-dimensional Hilbert
space (the single qubit space), a notion already encountered in chapter “Quantum
Probability and Quantum Information Theory”, Sect. 1.2. In analogy with the clas-
sical bit,2 we call the elements of an orthonormal basis in the 2-dimensional Hilbert
space |0〉 and |1〉. Intuitively, the states |0〉 and |1〉 are analogous to the values 0 and
1 that a (classical) bit can take. However, there is an important difference between a
qubit and a bit. Superpositions of the states |0〉 and |1〉 of the form

|ψ〉 = a|0〉 + b|1〉, (1)

where a, b ∈ C, with |a|2 + |b|2 = 1 can also exist.
There are various physical realizations of a qubit (see chapters “Photonic Real-

ization of Quantum Information Protocols” and “Physical Realizations of Quantum
Information”), e.g., an electronic or nuclear spin, or a polarized photon. Basis states
|0〉 and |1〉 of a single qubit space correspond to a fixed pair of reliably distinguish-
able states of the qubit, e.g., horizontal and vertical polarizations of the photon or
the spin-up (| ↑〉) and spin-down (| ↓〉) states of an electron along a particular axis.
In the case of the polarized photon, superpositions of these basis states correspond
to other polarizations, e.g., the state

2 A bit is the basic indivisible unit of classical information which takes one of two possible values –
0 and 1.
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1√
2

(|0〉 + i |1〉) (2)

corresponds to right circular polarization. Such a state is not orthogonal to the basis
states |0〉 and |1〉 and hence cannot be reliably distinguished from them, even in
principle.3 With regard to any measurement which distinguishes the states |0〉 and
|1〉, it behaves like |0〉 with probability 1/2 and like |1〉 with probability 1/2.

In the real world, however, there are no perfectly isolated systems. Real systems
suffer from unwanted interactions with their environments and are hence open. In
quantum information processing systems, these interactions manifest themselves
as noise, which damages the information that the system encodes, thus leading to
errors. This noise process, known as decoherence, plays a vital role in quantum
information theory and, in order to understand it, we need to study the properties of
states of open quantum systems.

An open system can be considered to be a subsystem of a larger closed system, in
which the interactions with the environment are incorporated (see chapter “Bipartite
Quantum Entanglement”, Sect. 4). The most general description of the state of a
quantum system, which also holds for such composite systems, is provided by the
density matrix formalism. A density matrix (or density operator) ρ is a positive
semi-definite, linear operator of unit trace, acting on the Hilbert space H of the
system: ρ ≥ 0; Tr ρ = 1. The density matrix formalism also provides a description
of a system whose precise state is not known (see chapter “Hilbert Space Methods
for Quantum Mechanics”, Sect. 2.1).

Consider a system described by a statistical mixture of state vectors |ψ1〉, |ψ2〉,
. . . , |ψn〉, with corresponding probabilities p1, p2 . . . pn,

∑
i pi = 1. The state of

the system is, therefore, characterized by an ensemble {pi , |ψi 〉}ni=1. The density
matrix, ρ, of such a system is defined as follows:

ρ :=
n∑

i=1

pi |ψi 〉〈ψi |. (3)

The state vectors |ψi 〉 are normalized but they need not be mutually orthogonal.
Strictly speaking, the operator ρ is the density operator and the matrix representing
it is the density matrix. Note that different ensembles may give rise to the same
density matrix.

A quantum system whose state vector is known precisely is said to be in a pure
state, and in this case, there is only one term in the sum (3) and the density matrix
is a one-dimensional projector; e.g., if the system is known to be in a state |ψ2〉 then
p2 = 1, pi = 0∀ i �= 2, and ρ = |ψ2〉〈ψ2|. If there is more than one term in the
sum (3) then the density matrix ρ is said to be mixed. Equivalently, a density matrix
ρ is pure if Tr (ρ2) = 1 and mixed if Tr (ρ2) < 1. Henceforth, we shall use the word

3 Non-orthogonal states of a quantum mechanical system cannot be reliably distinguished by any
measurement (see, e.g., [8]).
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state to refer to a density matrix, whereas the word pure state shall be used to refer
to both the state vector |ψ〉 and the corresponding density matrix ρ = |ψ〉〈ψ |. The
system is said to be in a mixed state if its density matrix is mixed. Pure states are
extremal points of the convex set of all states (see step 1 of Exercise 1 of chapter
“Bipartite Quantum Entanglement”).

The expectation value of any observable A in a state ρ is given by a positive,
linear, normalized functional φ (see chapter “Hilbert Space Methods for Quantum
Mechanics”, Sects. 1.5 and 2.1):

φ(A) ≡ 〈A〉 = Tr (Aρ), (4)

where A ∈ B(H) and A = A†. Here B(H) denotes the algebra of all operators
acting in H and A† denotes the Hermitian conjugate of the operator A. As seen
in chapter “Hilbert Space Methods for Quantum Mechanics”, Sect. 2.3, when one
considers a composite (bipartite) system AB, its Hilbert space is HAB = HA⊗HB ,
where HA,HB are the Hilbert spaces of the two parts (see chapter “Hilbert Space
Methods for Quantum Mechanics”, Sect. 1.3). If the system is in the state ρAB then
the state of the subsystem A is given by the operator

ρA := Tr BρAB, (5)

which acts in HA. Here Tr B denotes a trace over the Hilbert space HB alone. It is
referred to as the partial trace over the Hilbert space of the system B. Moreover,
if TA is an operator in B(HA), and 1B is the identity operator in B(HB), then (see
step 1 of Exercise 1)

Tr ((TA ⊗ 1B)ρAB) = Tr A(ρATA) . (6)

The operator ρA is referred to as the reduced density matrix of the subsystem A.
Similarly, the reduced density matrix of the subsystem B is given by ρB := Tr AρAB .
Reduced density matrices satisfy ρA ≥ 0, Tr ρA = 1.

The most general description of the dynamics of an open quantum system is
provided by the quantum operations formalism. A quantum operation (or super-
operator) Φ is a linear, completely positive, trace-preserving map (CPT) which
takes density matrices to density matrices (see chapter “Hilbert Space Methods for
Quantum Mechanics”, Sect. 2.4 and chapter “Quantum Probability and Quantum
Information Theory”, Sect. 5):

Φ : ρ �→ ρ′, ρ ∈ B(H), ρ′ ∈ B(H′), ρ, ρ′ ≥ 0, Tr ρ = 1 = Tr ρ′ . (7)

In general a quantum operation captures the dynamical change to the state of a
system, which occurs as the result of some physical process: ρ is the initial state
before the process and Φ(ρ) is the final state after the process occurs. There are
various physical processes which are of relevance in quantum information theory,
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e.g., time evolution of the state of an open system, compression of data from a
quantum information source and transmission of quantum information through a
noisy quantum channel. The latter is the quantum analogue of the transmission of
information through a classical communications channel. In view of this analogy, a
quantum operation is also referred to as a quantum channel. The channel acts on an
input state ρ, yielding the output state Φ(ρ) = ρ′. In general ρ and ρ′ may be in
different Hilbert spaces H and H′, respectively. In this case, H and H′ are referred
to as the input and output Hilbert spaces of the channel Φ.

Exercise 1

1. Consider a bipartite system AB with Hilbert space HAB = HA ⊗HB. Let the
system be in a state ρAB and let ρA and ρB denote the reduced density matrices
of its two parts. Prove that if T = TA ⊗ 1B is an operator acting on HAB then

Tr (ρAB T ) = Tr A(ρATA). (8)

2. Show that the following three operators,

E1 =
√

2

1+√2
|1〉〈1| , E2 =

√
2

2+ 2
√

2
(|0〉 − |1〉)(〈0| − 〈1|), (9)

and E3 = 1 − E1 − E2, form a POVM (see [8], chapter “Hilbert Space Meth-
ods for Quantum Mechanics”, Sect. 1.5 and chapter “Quantum Probability and
Quantum Information Theory”, Sect. 5). Namely, their sum is the identity so
that ρ �→ ∑3

i=1
√

Ei ρ
√

Ei is a completely positive trace-preserving map. Sup-
pose Alice gives Bob a state prepared in one of the two states |ψ1〉 = |0〉 or
|ψ2〉 = (|0〉 + |1〉)/√2. Show that if Bob does a measurement characterized
by these POVM elements on the state he receives, he never makes an error of
misidentification. Discuss the possible outcomes.

3 Rudiments of Classical Information Theory

For the benefit of the reader, some of the topics of chapter “Classical Informa-
tion Theory”4 are briefly reviewed here. The issues of storage and transmission
of classical information were first addressed by Claude Shannon in 1948. He laid
the foundation of classical information theory by answering the following key
questions:
(Q1) What is the limit to which information can be reliably compressed, that is,
compressed in a manner such that it can be recovered later with arbitrarily low
probability of error?

4 The symbol for the Shannon entropy and related quantities used in this chapter is H instead of h.
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This question is of relevance because there is often a physical limit to the amount
of space available for the storage of data, e.g., in the memory of a mobile phone.
(Q2) What is the amount of information that can be reliably transmitted through a
communications channel ?

The relevance of this question arises from the fact that one of the biggest hur-
dles that one faces in the transmission of information is the presence of noise in
communication channels, e.g., a conversation over a crackling telephone line or a
spacecraft sending photos from a distant planet. The effect of this noise is to distort
the information transmitted through it.

The answer to (Q1) is given in Shannon’s noiseless channel coding theorem [14].
It states that the limit to which information from a source can be compressed is given
by the Shannon entropy (see chapter “Classical Information Theory”, Sect. 1.2) – a
quantity characteristic of the source.

The outputs (or signals) of a classical information source are sequences of letters
(or symbols) chosen from a finite set J – the source alphabet, according to a given
probability distribution. Some examples of source alphabets are (i) binary alphabet:
J = {0, 1}; (ii) telegraph English: J consists of the 26 letters of the English alphabet
and a space; (iii) written English: J consists of the 26 letters of the English alphabet
in upper and lower cases and punctuation marks.

The simplest example of a source is a memoryless source. It is characterized
by a probability distribution {p(u)}, and each use of the source results in a letter
u ∈ J being emitted with probability p(u). A signal emitted from the source does
not depend on the previously emitted signals. A memoryless source can therefore
be modeled by a sequence of independent, identically distributed (i.i.d.) random
variables U1,U2, . . . ,Un with common probability mass function p(u) = P(Uk =
u), u ∈ J , for all 1 ≤ k ≤ n. The signals of the source are sequences of letters
(u1, u2, . . . , un) ∈ J n taken by these variables and

p(u1, u2, . . . , un) ≡ P(U1 = u1, . . . ,Un = un) =
n∏

i=1

p(ui ). (10)

A memoryless information source is also referred to as an i.i.d. information source.
The Shannon entropy of the source is a function of the source probability distri-

bution and is given by

H({p(u)}) = −
∑

u∈J

p(u) log p(u) . (11)

Here and henceforth, logarithms indicated by log are taken to base 2. This is natural
in the context of coding with binary alphabets. We use the convention 0 log 0 = 0,
which is justified by continuity

(
limx→0x log x = 0

)
. Hence, if an event {U = u}

has zero probability
(

p(u) = 0
)

then it does not contribute to the entropy. The
Shannon entropy of a single random variable H(X) with probability mass function
p(x), x ∈ J is given by
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H({p(x)}) = −
∑

x∈J

p(x) log p(x). (12)

It is a measure of the uncertainty of the random variable X . It also quantifies how
much information we gain on average when we learn the value of X .

Example 1 (Binary Entropy) Let X be a random variable which takes the value 1
with probability p, and the value 0 with probability (1− p). Then

H(X) = −p log p − (1− p) log(1− p) =: H(p). (13)

This is called binary entropy and we denote it by the symbol H(p). In particular,
H(p) = 1 bit when p = 1/2.

Data compression is possible because an information source typically produces
some outputs more frequently than others. In other words, there is frequently redun-
dancy in the information. During data compression one exploits the redundancy in
the data to form the most compressed version possible. There are different ways of
doing this. One way is called variable length coding. This is done by encoding the
signals in a way such that the outputs which occur more frequently are assigned
shorter descriptions (i.e., fewer bits) than the less frequent ones. For example, a
good compression for a source of English text could be achieved by using fewer
bits to represent the letter e than the letter z. This is because e occurs much more
frequently than z in the English text. Another way is called fixed length coding. This
is done by identifying a set of signals which have a high probability of occurrence
(typical signals), and assigning unique fixed length binary strings to each of these
signals. All other signals (which are atypical) are assigned a single binary string
of the same length as those assigned to the typical ones. However, in either case
of coding, there is a limit to which data from a classical information source can
be reliably compressed. This is given by Shannon’s noiseless channel coding theo-
rem. This theorem tells us that a classical i.i.d. source described by the probabilities
{p(u)} can be compressed so that, on an average, each use of the source can be rep-
resented using H({p(u)}) bits of information. Moreover, it tells us that if the source
is compressed any further, i.e., if fewer than H({p(u)}) bits are used to represent it,
then there is a high probability of error in retrieving the original information from
the compressed signals. Hence the Shannon entropy quantifies the optimal rate of
compression that can be achieved.

The answer to (Q2) is given in Shannon’s noisy channel coding theorem [14]. To
combat the effects of noise in a communications channel, the message to be sent is
suitably encoded by the sender and the resulting codewords (which are, e.g., binary
sequences) are then transmitted through the channel. The set of codewords consti-
tute a classical error-correcting code. The idea behind the encoding is to introduce
redundancy in the message so that upon decoding the received message, the receiver
can retrieve the original message with a low probability of error, even if part of the
message is lost or corrupted due to noise. The amount of redundancy which needs
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to be added to the original message depends on how much noise is present in the
channel.

A discrete5 channel is defined by an input alphabet JX , an output alphabet JY ,
and a set of conditional distributions

p(y(N )|x (N )). (14)

The input to the channel is the sequence x (N ) := (x1, . . . , xN ), with xi , i =
1, . . . , N , being letters from JX . The output of the channel is the word y(N ) :=
(y1, . . . , yN ) ∈ J N

Y . The conditional probability of receiving the word y(N ) at the

output of the channel, given that the codeword x (N ) ∈ J N
X was sent, is denoted by

p(y(N )|x (N )).
We suppose that these conditional distributions are known to both sender and

receiver. Each of the possible input sequences x (N ) induces a probability distribu-
tion on the output sequences y(N ). The correspondence between input and output
sequences is not one- to- one. Two different input sequences may give rise to the
same output sequence. However, we will see later that it is possible to choose a sub-
set of input sequences so that with high probability, there is only one highly likely
input that could have caused the particular output. The receiver at the output end of
the channel can then reconstruct the input sequences at the output with negligible
probability of error.

A simple class of discrete channels are the so-called memoryless channels. A
channel is said to be memoryless if the probability distribution of the output depends
only on the input at that time and is independent of previous channel inputs or
outputs.

Definition 1 A memoryless channel is one in which

p(y(N )|x (N )) =
N∏

i=1

p(yi |xi ) (15)

for y(N ) = (y1, . . . , yN ) and x (N ) = (x1, . . . , xN ). Here p(yi |xi ) is a letter-to-letter
channel probability, i.e., the conditional probability to obtain the letter yi as the
output, given that the letter xi has been sent through the channel. A memoryless
channel is completely characterized by the probabilities p(yi |xi ), i = 1, . . . , N .

To send a binary code word of length N through a discrete, memoryless channel,
the latter is used N times, a single bit being transmitted on each use. The process of

5 A channel is not always discrete. An example of a channel which is not discrete is a Gaussian
channel. This channel has a continuous alphabet. It consists of the set of all real numbers. This is a
time-discrete channel with output Yi = Xi + Zi at time i , where Xi is the input and Zi is the noise.
The Zi s are assumed to be IID random variables which have a Gaussian distribution of mean 0 and
a given variance N (say).
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input output
channel

YX ~ p(x)
p(y|x)

Fig. 1 Classical channel

information transmission through such a channel can be schematically represented
as in Fig. 1.

Here X is the random variable at the input of the channel and Y is the corre-
sponding induced random variable at the output of the channel. The channel is
characterized by the conditional probabilities p(y|x)where x, y are the values taken
by X and Y , respectively.

Transmission of information through a communications channel involves a
sender and a receiver. In quantum information theory the sender is popularly called
Alice and the receiver is called Bob. We shall adopt these personalities in the classi-
cal case too. Information transmission involves the following steps. Suppose Alice
wants to send a message M ∈M to Bob. Let the number of messages be given by

|M| = 2N R . (16)

She encodes her message M using the map

CN :M→ J N
X , (17)

where JX = {0, 1} in general. This encoding assigns to each of Alice’s possible
messages an input sequence, or code word x (N ) = (x1, . . . , xN ), xi ∈ JX ∀ i =
1, . . . , N . Each code word is sent through N uses of the channel to Bob, who
decodes the channel output using a decoding map

DN : J N
Y →M, (18)

which assigns a message in the set M to each possible output of N uses of the
channel. For a given pair of encoding and decoding maps, the probability of error is
defined to be the maximum probability, over all messages M ∈M, that the decoded
output of the channel is not equal to the message M :

p
(
CN ,DN

)
:= max

M∈M
Prob

(
DN (Y ) �= M |X = CN (M)

)
. (19)

The rate R of the encoding–decoding scheme, or equivalently, of the corresponding
code, is given by the ratio of the size of the message to the size of the corresponding
code word (sizes being measured in bits):

R = log |M|
N

. (20)
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It is hence equal to the number of bits of message transmitted per use of the
channel. A rate R is said to be achievable if there exists a sequence of encoding–
decoding pairs

(
CN ,DN

)
such that p

(
CN ,DN

) → 0 as N →∞.
It is natural to ask whether for any arbitrary channel it is always possible to find

a code which ensures that arbitrarily reliable transmission of information through
it can be achieved asymptotically, i.e., in the limit N → ∞, where N denotes the
length of the code words sent through the channel.

Shannon proved that this is indeed possible6 as long as there is some correlation
between the input and the output of the channel. Shannon’s noisy channel coding
theorem tells us that the optimal rate of a noisy channel, i.e., the maximum amount
of information (measured in bits) that can be transmitted reliably, per use of the
channel, is given by a quantity called the channel capacity. It also gives a prescrip-
tion for the calculation of capacities of memoryless channels.

Theorem 1 (Shannon’s noisy channel coding theorem) The channel capacity of a
discrete memoryless channel is given by

C = max
p(x)

H(X : Y ) . (21)

In the previous expression H(X : Y ) is the mutual information (see chapter
“Classical Information Theory”, Sect. 1.2) of the random variables X and Y :

H(X : Y ) = H(X)+ H(Y )− H(X,Y ), (22)

while H(X), H(Y ) are the Shannon entropies of the random variables X , Y , and
H(X,Y ) is the joint entropy7 of X and Y . The maximum in (21) is taken over all
possible input distributions p(x). Using properties of H(X), H(Y ), and H(X,Y )
(see e.g. [1]), it is easy to prove that (i) C ≥ 0 ; (ii) C ≤ log |JX |, and (iii) C ≤
log |JY |.

Exercise 2 Suppose there are two independent, discrete, memoryless channels, with
capacities C1 and C2 bits/s, respectively. Consider the compound channel formed
by using these two channels in parallel in the following sense: at every second a
symbol is transmitted through channel 1 (from its input alphabet) and a symbol
through channel 2 (from its input alphabet); each channel thus emits one symbol
each second. Prove that the capacity C of the compound channel is given by C =
C1 + C2.

6 More precisely, he showed that this is possible for discrete memoryless channels.
7 If X and Y have a joint probability distribution {p(x, y)} then

H(X, Y ) := −
∑

x,y

p(x, y) log p(x, y). (23)
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4 Quantum Entropy

Shannon entropy plays a pivotal role in classical information theory. It quantifies
the minimal physical resources needed to store information emitted by a classical
information source. It provides a limit to which data can be compressed reliably.
In quantum information theory the quantity analogous to the Shannon entropy is
called the von Neumann entropy. It has been introduced in chapter “Hilbert Space
Methods for Quantum Mechanics”, Sect. 3.1 and further elaborated upon in chapter
“Bipartite Quantum Entanglement”, Sect. 2.2; in this section we will study other of
its properties which are useful for the analysis of quantum informational tasks.

In a later section we shall see that the von Neumann entropy quantifies the incom-
pressible information content (or data compression limit) for a memoryless (or i.i.d.)
quantum source (to be defined below) – just as the Shannon entropy quantifies the
information content of a classical i.i.d. information source.

In analogy with the classical entropies (see chapter “Classical Information
Theory”, Sect. 1.2), we define quantum joint and conditional entropies for com-
posite quantum systems, and mutual information of two subsystems.

The quantum joint entropy S(A, B) of a composite system with two components
A and B is defined as

S(A, B) = −Tr (ρAB log ρAB), (24)

where ρAB is the density matrix of the composite system AB.
The quantum conditional entropy S(A|B) is defined as

S(A|B) = S(A, B)− S(B). (25)

The quantum mutual information of two subsystems A and B of a composite
system AB is defined as

S(A : B) = S(A)+ S(B)− S(A, B),

= S(A)− S(A|B) = S(B)− S(B|A). (26)

For classical random variables X and Y , H(X) ≤ H(X,Y ). This is intuitively obvi-
ous since the uncertainty of the random variable X cannot be more than the uncer-
tainty of the pair of random variables X and Y . However, this intuition is not valid
in the quantum case. For a bipartite quantum system AB, S(A) can indeed exceed
S(A, B) as seen in chapter “Bipartite Quantum Entanglement”, Sect. 2.1, in the case
of a maximally entangled state of two d-dimensional systems: S(A, B) = 0 since
the joint state is a pure state; however, ρA = Tr BρAB = 1A/d, and hence S(A) =
log d. In this case, therefore the conditional entropy S(B|A) = S(A, B) − S(A)
is negative. Notice that Corollary 2 in chapter “Bipartite Quantum Entanglement”,
Sect. 2.1, expresses a direct relationship between entanglement and negative condi-
tional entropy: A pure state |ΨAB〉 of a bipartite system AB is entangled if and only
if S(B|A) < 0.
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A number of important consequences follow from the fact that the von Neumann
entropy is strongly subadditive [7], namely that, for any state ρABC of a tripartite
system,

S(ρABC)+ S(ρB) ≤ S(ρAB + S(ρBC ). (27)

1. Conditioning reduces entropy When you condition on two systems B and C ,
the entropy is less than when you condition on system B alone.

S(A|BC) ≤ S(A|B). (28)

Proof

S(A|BC) = S(A, B,C)− S(B,C)

≤ S(A, B)+ S(B,C)− S(B)− S(B,C) by (27),

= S(A|B). (29)

In the above, S(A, B,C) denotes the von Neumann entropy of the composite
system ABC. ��

2. Discarding quantum systems never increases mutual information

S(A : B) ≤ S(A : BC). (30)

Proof

S(A : BC) = S(A)+ S(B,C)− S(A, B,C)

≥ S(A)+ S(B,C)− S(A, B)− S(B,C)+ S(B) by (27),

= S(A : B). (31)

��
3. Quantum operations never increase mutual information Let AB denote a com-

posite system. Let Φ denote a CPT map acting on the state of the subsystem B
alone. Let A′B ′ denote the composite system after this action. Then

S(A′ : B ′) ≤ S(A : B). (32)

Proof As mentioned in Sect. 2, the action of Φ on the state of the subsystem
B can be considered to result from the action of a unitary operator UBC on the
system B and an ancilla C [16]. The ancilla is assumed to be initially in a pure
state |0C 〉. Let C ′ denote the ancilla after the action UBC . Hence,

ρA′B′C ′ = (1A ⊗UBC ) (ρAB ⊗ |0C 〉〈0C |) (1A ⊗U †
BC ), (33)
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where 1A denotes the identity operator acting on the Hilbert space HA of the
system A. Taking the partial trace over the Hilbert space of the ancilla yields

ρA′B′ = (id A ⊗ΦB)(ρAB) ≡ Tr C ′(ρA′B′C ′), (34)

where id A denotes the identity map on B(HA). Note that

S(A : B) = S(A : BC), (35)

since C is initially uncorrelated with A and B. It is easy to verify that

S(A : BC) = S(A′ : B ′C ′). (36)

Moreover, it follows from (30) that

S(A′ : B ′C ′) ≥ S(A′ : B ′). (37)

The desired inequality (32) follows from (35), (36), and (37). ��

5 Data Compression in Quantum Information Theory

A quantum information source is defined by a set of pure states |Ψk〉, acting on a
given Hilbert space H, and a set of corresponding probabilities {pk}. Here |Ψk〉 is the
pure state of a quantum mechanical system and pk is the probability that the system
is in the pure state |Ψk〉. From the information theoretic point of view, we interpret
the |Ψk〉 as signals (or output) of the source, and the pk’s as the probabilities with
which the signals are produced. Hence, we can equivalently characterize a quantum
information source by {ρ,H} where ρ is a density matrix ρ = ∑

k pk |Ψk〉〈Ψk |, and
H the Hilbert space on which it acts. Note that the pure states |Ψk〉 need not be
mutually orthogonal.

To study data compression, we consider a sequence of density matrices ρn with
n → ∞ acting on Hilbert spaces denoted by Hn , of increasing dimensions Nn ,
given by

ρ(n) =
∑

k

p(n)k |Ψ (n)k 〉〈Ψ (n)k |, (38)

with p(n)k ≥ 0 and
∑

k p(n)k = 1. The state vectors |Ψ (n)k 〉 need not be mutually

orthogonal. We interpret the |Ψ (n)k 〉 as signal states and p(n)k as their probabilities of
occurrence, with dimHn = Nn , and Nn increasing with n. The optimal rate of data
compression, in the limit n →∞, is defined through Eqs. (41) and (42).

To compress data from such a source one encodes each signal state |Ψ (n)k 〉 by a

state ρ̃(n)k ∈ B(H̃n), where dimH̃n = dc(n) < Nn . Thus, a compression scheme is
a map

C(n) : |Ψ (n)k 〉〈Ψ (n)k | �→ ρ̃
(n)
k ∈ B(H̃n). (39)
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A corresponding decompression scheme is a map:

D(n) : B(H̃n) �→ B(Hn). (40)

Both C(n) and D(n) must be CPT maps.
In classical information theory, data compression corresponds to a reduction in

the number of bits required to store information emitted by a classical information
source. In the quantum case, the idea of data compression is analogous, with bits
being replaced by qubits, and a classical information source being replaced by a
quantum information source. In other words, the quantity that one compresses in
the quantum case is the dimension of the Hilbert space H̃n . The goal is, therefore,
to make the dimension dc(n) as small as possible (subject to the condition that the
information carried in the signal states can be retrieved with high accuracy upon
decompression).

The rate of compression is defined as

Rn := log(dimH̃n)

log(dimHn)
= log dc(n)

log Nn
. (41)

It is natural to consider the original Hilbert space, Hn , to be the Hilbert space of n
qubits (the n-qubit space). In this case Nn = 2n and hence log Nn = n. As in the
case of classical data compression, we are interested in finding the optimal limiting
rate of data compression, which in this case is given by

R∞ := lim
n→∞ Rn ≡ lim

n→∞
log dc(n)

n
. (42)

Unlike classical signals, quantum signal states are not completely distinguish-
able. This is because they are, in general, not mutually orthogonal. As a result,
perfectly reconstructing a quantum signal state from its compressed version is often
an impossible task and therefore too stringent a requirement for the reliability of
a compression–decompression scheme. Instead, a reasonable requirement is that a
state, which is nearly indistinguishable from the original signal state, can be recon-
structed from the compressed state ρ̃(n)k . A measure of indistinguishability useful for
this purpose is the ensemble average fidelity defined as follows (see chapter “Hilbert
Space Methods for Quantum Mechanics”, Sect. 3.3).

Fn :=
∑

k

p(n)k 〈Ψ (n)k |D(n)(ρ̃(n)k )|Ψ (n)k 〉. (43)

This fidelity satisfies 0 ≤ Fn ≤ 1 and Fn = 1 if and only if D(n)
(
ρ̃
(n)
k

)
=

|Ψ (n)k 〉〈Ψ (n)k | for all k. A compression–decompression scheme is said to be reliable
if Fn → 1 as n →∞.

The key idea behind data compression is the fact that some signal states have a
higher probability of occurrence than others (these states playing a role analogous
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to the typical sequences of classical information theory). These signal states span
a subspace, of the original Hilbert Space of the source, which is referred to as the
typical subspace.

5.1 Schumacher’s Theorem for Memoryless Quantum Sources

The notion of a typical subspace was introduced by Ohya and Petz [9]. It was first
used in the context of quantum information theory by Schumacher, in his semi-
nal paper [11]. He considered the simplest class of quantum information sources,
namely quantum memoryless or IID sources. For such a source the density matrix
ρ(n), defined through (38), acts on a tensor product Hilbert space Hn = H⊗n and is
itself given by a tensor product

ρ(n) = π⊗n . (44)

Here H is a fixed Hilbert space (representing an elementary quantum subsystem)
and π is a density matrix acting on H ; e.g., H can be a single qubit space, in which
case dim H = 2, Hn is the n-qubit space and π is the density matrix of a single
qubit. If the spectral decomposition of π is given by

π =
d∑

i=1

qi |φi 〉〈φi |, (45)

where d = dim H, then the eigenvalues and eigenvectors of ρ(n) are, respectively,
given by

λ
(n)
j = q j1q j2 . . . q jn , (46)

and

|ψ(n)j 〉 = |φ j1〉 ⊗ |φ j2〉 ⊗ · · · ⊗ |φ jn 〉. (47)

Thus we can write the spectral decomposition of the density matrix ρ(n) of an i.i.d.
source as

ρ(n) =
∑

j

λ
(n)
j |ψ(n)j 〉〈ψ(n)j |, (48)

where the sum is over all possible sequences j := ( j1 . . . jn), with each ji taking d

values. Hence we see that the eigenvalues ρ(n) are labeled by a classical sequence
of indices j = j1 . . . jn .
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The von Neumann entropy of such a source is given by

S(ρ(n)) ≡ S(π⊗n) = nS(π) = nH({qi }). (49)

Let T (n)ε be the classical typical subset of indices ( j1 . . . jn) for which

∣∣∣− 1

n
log

(
q j1 . . . q jn

)− S(π)
∣∣∣ ≤ ε, (50)

as in the theorem of typical sequences (see chapter “Classical Information Theory”,
Sect. 2.2). Defining T (n)ε as the space spanned by the eigenvectors |ψ(n)j 〉 with j ∈
T (n)ε then yields the quantum analogue of the theorem of typical sequences, the
typical subspace theorem (given below). We refer to T (n)ε as the typical subspace
(or more precisely, the ε-typical subspace).

Theorem 2 (Typical subspace theorem) Fix ε > 0. Then for any δ > 0 ∃ n0(δ) > 0
such that ∀n ≥ n0(δ) and ρ(n) = π⊗n, the following are true:
(a) Tr

(
P(n)ε ρ(n)

)
> 1− δ and (b) (1− δ) 2n(S(π)−ε) ≤ dimT (n)ε ≤ 2n(S(π)+ε),

where P(n)ε is the orthogonal projection onto the subspace T (n)ε .

Note that Tr (P(n)ε ρ(n)) gives the probability of the typical subspace T (n)ε .

As Tr (P(n)ε ρ(n)) approaches unity for n sufficiently large, T (n)ε carries almost all

the weight of ρ(n). Let T (n)⊥ε denote the orthocomplement of the typical subspace,
i.e., for any pair of vectors |ψ〉 ∈ T (n)ε and |φ〉 ∈ T (n)⊥ε , 〈φ|ψ〉 = 0. It follows from
the above theorem that the probability of a signal state belonging to T (n)⊥ε can be
made arbitrarily small for n sufficiently large.

Let P(n)ε denote the orthogonal projection onto the typical subspace T (n)ε . The
encoding (compression) of the signal states |Ψ (n)k 〉 of (38) is done in the following

manner. C(n) : |Ψ (n)k 〉〈Ψ (n)k | �→ ρ̃
(n)
k where

ρ̃
(n)
k := α2

k |Ψ̃ (n)k 〉〈Ψ̃ (n)k | + β2
k |Φ0〉〈Φ0|. (51)

Here

|Ψ̃ (n)k 〉 := P(n)ε |Ψ (n)k 〉
||P(n)ε |Ψ (n)k 〉||

; αk := ||P(n)ε |Ψ (n)k 〉|| ; βk = ||(1− P(n)ε )|Ψ (n)k 〉||, (52)

and |Φ0〉 is any fixed state in T (n)ε .
Obviously ρ̃(n)k ∈ B(T (n)ε ), and hence the typical subspace T (n)ε plays the role of

the compressed space. The decompression D(n)(ρ̃(n)k ) is defined as the extension of

ρ̃
(n)
k on T (n)ε to Hn :

D(n)
(
ρ̃
(n)
k

)
= ρ̃(n)k ⊕ 0. (53)
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The fidelity of this compression–decompression scheme satisfies

Fn =
∑

k

p(n)k 〈Ψ (n)k | ρ̃(n)k |Ψ (n)k 〉

=
∑

k

p(n)k

[
α2

k |〈Ψ (n)k |Ψ̃ (n)k 〉|2 + β2
k |〈Ψ (n)k |Φ0〉|2

]

≥
∑

k

p(n)k α2
k |〈Ψ (n)k |Ψ̃ (n)k 〉|2 =

∑

k

p(n)k α4
k

≥
∑

k

p(n)k (2α2
k − 1) = 2

∑

k

p(n)k α2
k − 1.

(54)

Using the typical subspace theorem, Schumacher [11] proved the following ana-
logue of Shannon’s noiseless channel coding theorem for memoryless quantum
information sources:

Theorem 3 (Schumacher’s quantum coding theorem) Let {ρn,Hn} be an i.i.d.
quantum source: ρn = π⊗n and Hn = H⊗n. If R > S(π) then there exists a
reliable compression scheme of rate R. If R < S(π) then any compression scheme
of rate R is unreliable.

Proof (i) R > S(π): Choose ε > 0 such that R ≥ S(π)+ ε.
For a given δ > 0, choose the typical subspace as above and choose n large

enough so that (a) and (b) of the Typical Subspace Theorem hold. We have that

dim T (n)ε ≤ 2n(S(π)+ε) ≤ 2n R . (55)

Hence, T (n)ε is a subspace of the compressed space H̃n . In this case one can show
that the compression–decompression scheme discussed previously is indeed reli-
able. To see this, note that

α2
k = 〈Ψ (n)k | P(n)ε |Ψ (n)k 〉, (56)

and hence

right-hand side of (54) = 2
∑

k

p(n)k 〈Ψ (n)k | P(n)ε |Ψ (n)k 〉 − 1

= 2Tr
(
P(n)ε ρ(n)

)− 1. (57)

From the statement (a) of the typical subspace theorem, it follows that the right-
hand side of (54)> 1−2δ. However, δ can be made arbitrarily small for sufficiently
large n, and this implies that there exists a reliable compression scheme of rate R
whenever R > S(π).

(ii) Suppose R < S(π). Choose ε > 0 such that R < S(π) − ε. Let the compres-
sion map be C(n). We may assume that the compressed space H̃n is a subspace
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of Hn with dim H̃n = 2n R . We denote the projection onto H̃n as P̃n and let

ρ̃
(n)
k = C(n)

(
|Ψ (n)k 〉 〈Ψ (n)k |

)
.

Fn =
∑

k

p(n)k 〈Ψ (n)k |D(n)(ρ̃(n)k ) |Ψ (n)k 〉,

=
∑

k

p(n)k 〈Ψ (n)k | P(n)ε D(n)(ρ̃(n)k )P(n)ε |Ψ (n)k 〉

+
∑

k

p(n)k 〈Ψ (n)k | (1− P(n)ε )D(n)(ρ̃(n)k )(1− P(n)ε ) |Ψ (n)k 〉

+
∑

k

p(n)k 〈Ψ (n)k | (1− P(n)ε )D(n)(ρ̃(n)k )P(n)ε |Ψ (n)k 〉

+
∑

k

p(n)k 〈Ψ (n)k | P(n)ε D(n)(ρ̃(n)k )(1− P(n)ε ) |Ψ (n)k 〉,

:= (I )+ (I I )+ (I I I )+ (I V ), (58)

where P(n)ε is the orthogonal projection onto the typical subspace T (n)ε of ρ(n).
Since ρ̃(n)k is concentrated on H̃n , we have ρ̃(n)k ≤ P̃n and hence D(n)(ρ̃(n)k ) ≤

D(n)(P̃n), for any decompression map D(n). Inserting this into the first term on the
right-hand side of (58) we get

(I ) ≤
∑

k

p(n)k 〈Ψ (n)k | P(n)ε D(n)(P̃(n))P(n)ε |Ψ (n)k 〉,

= Tr (ρ(n)P(n)ε D(n)(P̃(n))P(n)ε ),

=
∑

j∈T (n)ε

λ
(n)
j 〈ψ(n)j |D(n)(P̃n) |ψ(n)j 〉. (59)

In the above sum over j ∈ T (n)ε we have λ(n)j ≤ 2−n(S(π)−ε). It can therefore be

bounded as follows:

∑

j∈T (n)ε

λ
(n)
j 〈ψ(n)j |D(n)(P̃n) |ψ(n)j 〉 ≤ 2−n(S(π)−ε) ∑

j

〈ψ(n)j |D(n)(P̃n) |ψ(n)j 〉,

= 2−n(S(π)−ε)Tr
(
D(n)(P̃n)

)
,

= 2−n(S(π)−ε) 2n R, (60)

since D(n) is a CPT map and dim H̃n = 2n R . Since R < S(π) − ε, it is clear that
the right-hand side of (60) tends to 0 as n →∞.

In the second term (B) on the right-hand side of (58) we use the fact that
D(n)(ρ̃(n)k ) ≤ 1 (since D(n)(ρ̃(n)k ) is a density matrix) to get
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(I I ) ≤
∑

k

p(n)k 〈Ψ (n)k | (1− P(n)ε )|Ψ (n)k 〉,

= Tr (ρ(n)(1− P(n)ε )) =
∑

k /∈T (n)ε

λ
(n)
k (61)

By the typical subspace theorem, the right-hand side of (61) tends to 0 as n →∞.
The third and fourth terms on the right-hand side of (58) are conjugates of each

other. Using the Cauchy–Schwarz inequality, we obtain

(III) ≤
(

∑

k

p(n)k 〈Ψ (n)k |D(n)(ρ̃(n)k )1/2 P(n)ε D(n)(ρ̃(n)k )1/2|Ψ (n)k 〉
)1/2

×
(

∑

k

p(n)k 〈Ψ (n)k | (1− P(n)ε )D(n)(ρ̃(n)k )(1− P(n)ε )|Ψ (n)k 〉
)1/2

≤
(

∑

k

p(n)k 〈Ψ (n)k |D(n)(ρ̃(n)k )1/2D(n)(ρ̃(n)k )1/2|Ψ (n)k 〉
)1/2

×
(

∑

k

p(n)k 〈Ψ (n)k | (1− P(n)ε )D(n)(ρ̃(n)k )(1− P(n)ε )|Ψ (n)k 〉
)1/2

≤
(

∑

k

p(n)k 〈Ψ (n)k |Ψ (n)k 〉
)1/2

×
(

∑

k

p(n)k 〈Ψ (n)k |(1− P(n)ε )|Ψ (n)k 〉
)1/2

,(62)

where we have used the inequality D(n)(ρ̃(n)k ) ≤ 1. Hence,

(III) ≤
(

Tr (1− P(n)ε )ρ(n)
)1/2 =

⎛

⎜⎝
∑

k /∈T (n)ε

λ
(n)
k

⎞

⎟⎠

1/2

, (63)

which tends to 0 as n →∞ by the Typical Subspace Theorem. Since the fourth term
on the right-hand side of (58) is a conjugate of the third term, it also tends to zero.
Hence we see that for R < S(π) the fidelity Fn tends to 0 as n → ∞. Therefore
there is no reliable compression–decompression scheme in this case. ��

6 Quantum Channels

In classical information theory, Shannon’s noisy channel coding theorem asserts
that a classical communications channel has a well-defined information carrying
capacity and it provides a formula for calculating it. However, Shannon’s theorem is
not applicable to communications channels which incorporate intrinsically quantum
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effects. In this section we shall discuss the transmission of information through
noisy quantum channels.

As mentioned earlier, the quantum analogue of a classical stochastic communi-
cations channel is a linear, completely positive, trace-preserving (CPT) map. It is
referred to as a quantum channel and we denote it as Φ. The channel acts on an
input state ρ, yielding the output state Φ(ρ) (see Fig. 2). The noise in the channel
distorts the message sent through it and hence Φ(ρ) �= ρ in general. An example of
a quantum communications channel is an optical fibre. The input to the channel is a
photon in some quantum state. The latter suffers from the effects of noise in the opti-
cal fibre as it passes through it and consequently emerges from it in a transformed
quantum state.

output state

ρ

input state

Φ(ρ)
Φ : linear CPT map

Fig. 2 A quantum channel

A quantum channel Φ is said to be memoryless if using the channel n times
successively is described by the map

Φ⊗n = Φ ⊗Φ ⊗ . . .⊗Φ (n times). (64)

In this case, the action of each use of the channel is identical and it is independent
for different uses. If Φ acts on density matrices in B(H), then Φ⊗n acts on density
matrices in B(H⊗n). For example, consider H to be the single qubit space. Then
the input to Φ⊗n is an n-qubit state (say ρ(n)). In other words, the n qubits are sent
through the channel one by one and the resultant output state is given by Φ⊗n(ρ(n))

(see Fig. 3).

(3)ρ Φ
3 (3)ρ( )

Φ

Φ

Φ

input output

Fig. 3 Information transmission through a product channel Φ⊗3. Here ρ(3) ∈ B(H⊗3)

As in the classical case, noise present in a quantum channel distorts the infor-
mation transmitted through it, thus introduce errors in the received message. In
order to study particular examples of noisy quantum channels, we need a way to
characterize these errors. In the following section it will be shown that these errors
can be characterized by the actions of the four matrices: the 2 × 2 identity matrix
σ0, and the three Pauli matrices σx , σy , and σz .

σ0 =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (65)
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The action of these operators on the basis vectors |0〉 and |1〉 of the single qubit
space H are

σ0|0〉 = |0〉 , σ0|1〉 = |1〉 ; σx |0〉 = |1〉 , σx |1〉 = |0〉
σz |0〉 = |0〉 , σz |1〉 = −|1〉 ; σy |0〉 = i |1〉 , σy |1〉 = −i |0〉 . (66)

6.1 Characterization of Quantum Errors

Decoherence, which results in errors, arises from the interaction of a system with
its environment. A simple characterization of errors can therefore be obtained by
considering the interaction of a system with its environment. Consider a single qubit,
which is initially in a pure state, and which interacts with its environment in an
arbitrary manner. Without loss of generality we can assume that the initial state of
the environment is a pure state (which we denote as |0〉E ). This is because if the
environment is in a mixed state, we can always purify it by adding an extra fictitious
system. The latter does not affect the dynamics of the original single qubit (which
we refer to as the principal system).

The evolution of the qubit and its environment can be described by a unitary
transformation U such that

U |0〉⊗|0〉E = |0〉⊗|e00〉E+|1〉⊗|e01〉E , U |1〉⊗|0〉E = |0〉⊗|e10〉E+|1〉⊗|e11〉E .

(67)

Here |ei j 〉E , i, j ∈ {0, 1} denote the four (corresponding) states of the environment.
They need not be normalized or mutually orthogonal.

Under U , an arbitrary state |ψ〉 = a|0〉 + b|1〉 of the single qubit evolves into

U
((

a|0〉 + b|1〉
)
⊗ |0〉E

)
= |Ψ 〉; explicitly,

|Ψ 〉 = a
(
|0〉 ⊗ |e00〉E + |1〉 ⊗ |e01〉E

)
+ b

(
|0〉 ⊗ |e10〉E + |1〉 ⊗ |e11〉E

)

=
(

a|0〉 + b|1〉
)
⊗ |e00〉E + |e11〉E

2
+

(
a|0〉 − b|1〉

)
⊗ |e00〉E − |e11〉E

2

+
(

a|1〉 + b|0〉
)
⊗ |e01〉E + |e10〉E

2
+

(
a|1〉 − b|0〉

)
⊗ |e01〉E − |e10〉E

2
.

(68)

Now,

a |0〉 + b |1〉 = σ0

(
a |0〉 + b |1〉

)
= σ0 |ψ〉 ,

a |0〉 − b |1〉 = σz

(
a |0〉 + b |1〉

)
= σz |ψ〉 ,

a |1〉 + b |0〉 = σx

(
a |0〉 + b |1〉

)
= σx |ψ〉 ,

a |1〉 − b |0〉 = − i σy

(
a |0〉 + b |1〉

)
= −i σy |ψ〉 ,

(69)
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where σ0 is the 2 × 2 identity operator and σx , σy , and σz are the Pauli matrices.
Hence,

U
(
|ψ〉 ⊗ |0〉E

)
= σ0 |ψ〉 ⊗ |e0〉E + σz |ψ〉 ⊗ |ez〉E

+ σx |ψ〉 ⊗ |ex 〉E + σy |ψ〉 ⊗ |ey〉E , (70)

where the definition of the states |ei 〉E , i ∈ {0, x, y, z} follow from (68) and (69).
The effect of U on the qubit can, therefore, be expressed in terms of the unitary

operators σ0, σx , σy , and σz (acting on the single qubit space). Heuristically, we may
interpret this by saying that one of four things might happen:
nothing (σ0), a bit flip (σx ), a phase flip (σz), or a combined flip (σy = iσxσz).

However, this classification should not be taken literally because unless the states
{|e0〉E , |ex 〉E , |ey〉E , |ez〉E } are mutually orthogonal, there is no conceivable mea-
surement that could perfectly distinguish between the four alternatives. This is
because quantum mechanics allows only mutually orthogonal states to be distin-
guished perfectly.

Now consider the unitary transformation U of n qubits interacting with their
environment. The effect of U on the n-qubit system can be expressed in terms of 4n

operators belonging to the set

{σ0, σx , σy, σz}⊗n . (71)

In other words, each such operator can be expressed as a tensor product of n single-
qubit operators, with each operator in the string chosen from the set {σ0, σx , σy, σz}.
Let |Ψ 〉 be the initial state of the n-qubit system and assume that the environment is
in the pure state |0〉E . Then the action of an arbitrary unitary operator U on the com-
posite system consisting of the n-qubit system and the environment can be expanded
as

U |Ψ 〉 ⊗ |0〉E =
∑

a

Ea |Ψ 〉 ⊗ |ea〉E , (72)

where the index a ranges over 4n values. This is because each operator Ea is a
tensor product of n operators, each of the latter being one of the four Pauli matrices
σ0, σx , σy , or σz .

The states {|ea〉E } are the corresponding states of the environment – which are
not assumed to be normalized or mutually orthogonal. An important feature of this
expansion is that each Ea is a unitary operator.

In obtaining a characterization of quantum errors acting on messages carried by
n qubits, we assume that errors are

• locally independent, i.e., errors on different qubits (or gates) are not correlated.
• sequentially independent, i.e., subsequent errors on the same qubit (or in the same

gate) are not correlated.



Quantum Entropy and Information 197

These assumptions allow us to express an error operator acting on n qubits as a
tensor product of error operators on individual qubits. Consequently, an equivalent
characterization of error operators acting in the n-qubit Hilbert space Hn := H⊗n

is given by

Ea =
⊗

1≤ j≤n

W ( j)
α j
, (73)

where a = (α1, . . . , αn) (with α j ∈ {I, X,Y, Z}) being a word from a four-letter
alphabet:

Wα j = σ0, σx σy, σz,

if α j = I, X,Y, Z respectively, (74)

and W ( j)
α j is the corresponding 2× 2 matrix in the j th position in the tensor product

Ea . Hence, Ea is a 2n × 2n matrix. It is called a Pauli operator. From (73) it follows
that on each qubit there is either no error or an error corresponding to σx , σy or σz

(heuristically).
Let us now study the action of a Pauli operator Ea on an n-qubit state. For this, it
suffices to consider the action of Ea on basis states |x〉 of Hn , where x ∈ {0, 1}n .

If a has non-trivial ( �= I ) letters in positions j1, . . . , jr then Ea can be alterna-
tively expressed as the usual product of r 2n × 2n matrices:

Ea = E( j1)
α j1

· · ·E( jr )
α jr
. (75)

The matrices E( j)
X ,E

( j)
Y , and E( j)

Z are defined through their action on the basis vec-
tors |x〉 in Hn :

E( j)
X |x〉 = |x + e j 〉, (76)

where e j = (0, . . . , 1 j , . . . , 0) is a binary string of length n with a 1 occurring only
in the j th position. (Here x + e j stands for mod2 addition.) Alternatively, we can
write

E( j)
X |x〉 = |x ′〉, with x ′k = xk for k �= j and x ′j = x j + 1. (77)

Note that all additions are modulo 2. Further,

E( j)
Y |x〉 = i(−1)x j |x + e j 〉,

E( j)
Z |x〉 = (−1)x j |x〉.

(78)

Hence, E( j)
X ,E

( j)
Y , and E( j)

Z act non-trivially only on the j th tensor factor of |x〉,
producing results which depend only on the values of x j (and not on the values of
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the other xk’s). It is easy to see from the above definitions that Ea is Hermitian and

unitary: E†
a = E−1

a = Ea . In a conventional language, α j ∈ {X,Y, Z} denotes a
“local” error at the j th position. Such an error affects the j th qubit only. Hence,
the action of Ea is determined by the “local” errors contained in the word a =
(α1, α2, . . . αn).

6.2 Examples of Single Qubit Channels

Let us consider two simple examples of single qubit channels, i.e., quantum chan-
nels acting on single qubits.

Bit flip channel: this channel flips the qubit sent through it with probability p and
leaves it invariant with probability (1− p). If ρ is the input state to the channel then
the output is

Φ(ρ) = pσxρσx + (1− p)ρ. (79)

The corresponding Kraus operators are A1 = √
1− p1 , A2 = √

pσx . This is
the quantum analogue of the binary symmetric channel (see, e.g., [1]).

Depolarizing channel: this channel leaves the input qubit intact with probability
(1− p), and it results in the occurrence of the following errors with probability p/3
each: bit flip (σx ), phase flip (σz), and combined flip (σy).

Φρ = (1− p)ρ + p

3

(
σx ρ σx + σy ρ σy + σz ρ σz

)
. (80)

There are four Kraus operators:

A1 =
√

1− p 1 ; A2 =
√

p

3
σx ; A3 =

√
p

3
σy ; A4 =

√
p

3
σz . (81)

Alternatively, a depolarizing channel can be considered to leave a qubit unaffected
with a certain probability, say (1 − q), and to replace its state with the completely
mixed state 1/2 with probability q. In other words the error completely randomizes
the state with probability q:

Φ(ρ) = (1− q)ρ + q
1

2
. (82)

Note that ρ + σx ρ σx + σy ρ σy + σz ρ σz = 21 for any state ρ, hence

Φ(ρ) = (1− q)ρ + q

4
ρ + q

4
[σxρσx + σyρσy + σzρσz],

= (1− 3

4
q)ρ + q

4

∑

α=x,y,z

σαρσα . (83)
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Comparing (83) with (80) we find that q = (4/3)p. The depolarizing channel can
be generalized to quantum systems of dimension d > 2:

Φ(ρ) = p
1

d
+ (1− p) ρ , (84)

since 1/d represents the completely mixed state in a Hilbert space of d-dimensions.

Amplitude damping channel: this channel describes energy dissipation. It provides a
simple model of the decay of the excited state of a 2-level atom due to spontaneous
emission of a photon. If the system is in the excited state |1〉, then it has a probability
p of decaying to its ground state |0〉, emitting a photon in the process. The Kraus
operators of the channel are given by

A1 =
(

1 0
0
√

1− p

)
, A2 =

(
0
√

p
0 0

)
. (85)

Their actions on the states |0〉 and |1〉 of the atom are as follows:

A1|0〉 = |0〉 ; A1|1〉 =
√

1− p|1〉 ,
A2|0〉 = 0 ; A2|1〉 = √

p|0〉 . (86)

The operator A2 describes the decay of the atom from its excited state to its ground
state, whereas the operator A1 describes how the state evolves if there is no decay
and spontaneous emission. Under the action of this channel, the density matrix ρ of
the atom undergoes the following transformation:

ρ ≡
(
ρ00 ρ01
ρ10 ρ11

)
�−→

(
ρ00 + pρ11

√
1− pρ01√

1− pρ10 (1− p)ρ11

)
. (87)

Consider applying the channel n times in succession. Then

lim
n→∞ Φ(ρ) =

(
ρ00 +ρ11 0

0 0

)
= |0〉〈0| . (88)

The final state of the atom is its ground state. This is intuitively obvious, since
an atom in its excited state necessarily decays to its ground state. The amplitude
damping channel is an example of a quantum channel which takes a mixed initial
state ρ = ∑1

i, j=0 ρi j |i〉〈 j | to a pure final state (ρ00 + ρ11)|0〉〈0| (asymptotically).
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7 Accessible Information and the Holevo Bound

7.1 Introduction

Suppose Alice has a classical information source which emits symbols x ∈ J =
{1, 2, . . . ,M} with corresponding probabilities p(x). The source can be charac-
terized by a classical random variable X with probability mass function p(x) =
P(X = x), x ∈ J . Alice wishes to communicate the symbols emitted by the source
to Bob. To do this, she encodes the symbol x into a suitable quantum state ρx (i.e.,
in general, a mixed state density matrix) of some physical system. She then sends
this state to Bob through a noiseless quantum channel. Bob does a measurement
(POVM) on the state ρx and tries to guess the symbol x . Let Y denote the classical
random variable corresponding to the outcome of Bob’s POVM.

(Q) How much information can Bob gain about X through the measurement (i.e.,
from Y ) ?

This is given by the mutual information H(X : Y ) (defined by (22)) of the ran-
dom variables X and Y , since H(X : Y ) is a measure of how much information X
and Y have in common.

To get the maximum information about X , Bob would need to choose a measure-
ment which maximizes H(X : Y ). The maximum information amount of informa-
tion about X that Bob can gain through any possible measurement is referred to as
his accessible information. It can be viewed as the amount of classical information
that can be stored and recovered from a quantum system. It is denoted by the symbol
Iacc and defined as follows:

Iacc = max H(X : Y ), (89)

where the maximum is taken over all possible measurement schemes.
In the following section we obtain an upper bound to Iacc by first considering a

simple example.

7.2 An Example

Suppose a classical source emits each of the signals x ∈ {1, 2, 3} with probability
1/3. For each x , Alice does the encoding x �→ ρx , with ρx = |ψx 〉〈ψx |, where

|ψ1〉 = |0〉 = (1, 0)T ,

|ψ2〉 = − 1

2
|0〉 +

√
3

2
|1〉 =

(
− 1

2
,

√
3

2

)T
,

|ψ3〉 = − 1

2
|0〉 −

√
3

2
|1〉 =

(
− 1

2
, −

√
3

2

)T
.

(90)
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Note that the above signal states are not mutually orthogonal:

〈ψx |ψy〉 = −1

2
δxy, x, y = 1, 2, 3 . (91)

Note that the density matrix ρ corresponding to the ensemble of states
{px , ρx }x=1,2,3, where px = 1/3 for each x ∈ {1, 2, 3}, is given by the completely
mixed state :

ρ :=
3∑

x=1

px ρx = 1

3

3∑

x=1

ρx = 1/2. (92)

Alice sends her signal states to Bob through a noiseless quantum channel. Using the
symmetry in Alice’s signal states, it can be proved that the optimal measurement
that Bob can do is characterized by POVM elements:

Ex = 2

3
(1− |ψx 〉〈ψx |), x = 1, 2, 3 . (93)

If Bob receives the pure state ρx = |ψx 〉〈ψx |, then the probability that his measure-
ment yields the outcome x is given by

P(Y = x |X = x) = Tr (Exρx ) = 0 . (94)

The probability of an outcome y ∈ {1, 2, 3}, where y �= x , is given by

p(y|x) = P(Y = y|X = x) = Tr (Eyρx ),

= 2

3
(1− |〈ψx |ψy〉|2),

= 2

3
(1− 1

4
) = 1

2
for all y �= x . (95)

A measurement outcome x , therefore, implies that Alice definitely did not send
the state ρx . However, from this outcome, Bob can only conclude that the state
that Alice sent could have been either one of the other two, with equal probability
(p = 1/2).

Moreover, we find that H(X) = log 3, and H(X |Y ) = 1. Hence the mutual
information is given by

H(X : Y ) = H(X)− H(X |Y ) = log 3− 1 < 1 . (96)

On the other hand we have that S(ρ) = log 2 = 1, since ρ = 1/2. Hence, we see
that

max H(X : Y ) < S(ρ) , (97)
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and therefore the accessible information Iacc is bounded above by the von Neumann
entropy S(ρ). However, the actual upper bound for the accessible information can
be made stronger, and is given by the well-known Holevo bound [5].

Theorem 4 (Holevo bound) Suppose Alice has a classical source, characterized by
a random variable X, which takes values x ∈ J = {1, 2, . . . ,M} with probabilities
p(x). She encodes the symbol x into a quantum state ρx and sends it to Bob through
a noiseless quantum channel. Bob does a measurement on it, described by a finite
set of POVM elements {Ey}. Let Y be the classical random variable corresponding
to the outcome of the measurement. Then for any such measurement that Bob may
do, the mutual information H(X : Y ) satisfies the following upper bound:

H(X : Y ) ≤ χ , (98)

where

χ := S(ρ)−
∑

x∈J

px S(ρx ) , (99)

and ρ = ∑
x∈J pxρx . The equality in (98) is achieved if all the ρx ’s commute (in

which case they are simultaneously diagonalizable) and the measurement is per-
formed in the simultaneous eigenbasis of all the ρx ’s.

The Holevo bound is thus an upper bound to the accessible information. The
quantity χ is called the Holevo χ quantity or Holevo information.

Remark 1 The Holevo χ quantity not only depends on the state ρ but also on its
“preparation”, i.e., on the ensemble E := {px , ρx }. To emphasize this we will write
χ as χ(E). In particular χ(E) reduces to the von Neumann entropy S(ρ) for an
ensemble E of pure states. This is because S(ρx ) = 0 if ρx is pure and hence in this
case the second term on the right-hand side of (99) vanishes.

Proof The Holevo bound follows easily from the strong subadditivity (SSA) of the
von Neumann entropy (see chapter “Hilbert Space Methods for Quantum Mechan-
ics”, Sect. 3.1). Since SSA is a property involving three systems, we first need to
identify three systems to which we could apply the SSA. For this purpose we con-
sider the enlarged Hilbert Space representation, obtained by embedding the classical
random variable X into a dummy quantum system A. The latter can be viewed as
a quantum register which keeps a record of the classical symbol x that Alice wants
to communicate to Bob, and by definition its Hilbert space HA has an orthonormal
basis whose elements are labeled by the symbols x , i.e.,

{|x〉 : x ∈ J } . (100)

Let Q be a quantum system (e.g., a photon) in whose states, ρx , Alice encodes her
message x . Let B be a quantum system representing Bob’s measuring device. The
latter is considered to be initially in some fixed pure state |0B〉. Hence, the initial
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state of the composite system AQB, with Hilbert space HA ⊗HQ ⊗HB , is given by
the density matrix

ρAQB =
∑

x∈J

px |x〉〈x | ⊗ ρx ⊗ |0B〉〈0B | . (101)

Bob’s measurement is described by POVM elements {Ey}, which act on the Hilbert
space of the quantum system Q. The corresponding outcome y of the measurement
is recorded in the state of the measuring device. Let A′Q′B ′ denote the composite
system after this measurement. Hence, as a result of the measurement, the state ρAQB

of the composite system gets transformed to

ρA′Q′B′ =
∑

x,y∈J

px |x〉〈x | ⊗
√

Eyρx
√

Ey ⊗ |y〉〈y| . (102)

Note the following

1. The quantum mutual entropies satisfy

S(A : Q) = S(A : Q B), (103)

since B is initially uncorrelated with A and Q.
2.

S(A : Q B) ≥ S(A′ : Q′B ′), (104)

since a quantum operation (in this case Bob’s POVM) acting on Q cannot
increase the mutual information. This follows from the property (32) of Sect. 4.

3.

S(A′ : Q′B ′) ≥ S(A′ : B ′), (105)

since discarding quantum systems never increases mutual information. This fol-
lows from the property (30) of Sect. 4.

Putting these together, we obtain

S(A′ : B ′) ≤ S(A : Q). (106)

The inequality (106) is actually the Holevo bound. To see this, let us evaluate the
terms on either side of the inequality. Let us start with the term S(A : Q) appearing
on the right hand side of (106). Note that

ρAQ = TrBρAQB =
∑

x∈J

px |x〉〈x | ⊗ ρx . (107)
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Hence,

ρA = TrQρAQ =
∑

x∈J

px |x〉〈x | , ρQ = TrAρAQ =
∑

x∈J

pxρx ≡ ρ. (108)

Therefore, S(A) ≡ S(ρA) = H({px }) (the Shannon entropy corresponding to the
probability distribution {px }) and S(Q) ≡ S(ρQ). Moreover,

S(A, Q) ≡ S(ρAQ) = H({px })+
∑

x

px S(ρx ). (109)

This follows from step 3 of Exercise 3 in Sect. 2.2 of chapter “Bipartite Quantum
Entanglement”. This is because (i) the density matrices |x〉〈x |⊗ρx have orthogonal
supports for different x’s, since the vectors |x〉 are mutually orthogonal, and (ii)
S(|x〉〈x | ⊗ ρx ) = S(ρx ). Hence,

S(A : Q) = S(A)+ S(Q)− S(A, Q),

= S(ρ)−
∑

x

px S(ρx ) ≡ χ. (110)

Let us now inspect the term S(A′ : B ′) appearing on the left-hand side of (106):
Note that

ρA′Q′B′ =
∑

x,y∈J

px |x〉〈x | ⊗
√

Eyρx
√

Ey ⊗ |y〉〈y|, (111)

Therefore,

ρA′B′ = Tr Q′ρAQ =
∑

x,y∈J

px |x〉〈x |Tr (
√

Eyρx
√

Ey)⊗ |y〉〈y|. (112)

By the cyclicity of the trace (see chapter “Hilbert Space Methods for Quantum
Mechanics”, Sect. 1.5),

Tr (
√

Eyρx
√

Ey) = Tr (Eyρx ) = p(y|x) . (113)

Moreover, using the relation p(x, y) = p(x)p(y|x), we obtain

ρA′B′ =
∑

x,y∈J

p(x, y)|xy〉〈xy|. (114)

Note that the pure states {|xy〉} form an orthonormal basis of HA ⊗ HB . Hence
(114) is the spectral decomposition of ρA′B′ . This implies that

S(A′ : B ′) = H(X : Y ). (115)
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Substituting (110) and (115) in (106) we obtain

H(X : Y ) ≤ χ. (116)

This completes the proof of the Holevo bound. ��

7.3 Properties of the Holevo χ Quantity

The Holevo χ quantity can be considered to be a generalization of the von Neumann
entropy S(ρ), which reduces to S(ρ) for an ensemble of pure states.

It is non-negative: χ(E) ≥ 0. This follows easily from the concavity of the von
Neumann entropy:

S(ρ) = S
( ∑

x

pxρx

)
≥

∑

x

px S(ρx ) . (117)

It can be expressed in terms of the relative entropy as follows. For an ensemble
E = {px , ρx }, and ρ := ∑

x pxρx ,

χ(E) = −Tr ρ log ρ +
∑

x

px Tr ρx log ρx ,

=
∑

x

px

(
Tr ρx log ρx − Tr ρx log ρ

)
,

=
∑

x

px S(ρx ||ρ). (118)

From (118) and the Uhlmann monotonicity (33) of the relative entropy (see chap-
ter “Hilbert Space Methods for Quantum Mechanics”, Sect. 3.2), it follows that a
quantum operation can never increase the Holevo χ quantity: If E = {px , ρx } and
E ′ = {px , Φ(ρx )} then

χ(E ′) ≤ χ(E) . (119)

The monotonicity of χ under quantum operations indicates that χ quantifies the
amount of information encoded in a quantum system. This is because decoherence,
described by a quantum operation Φ, can only retain or reduce χ . It can never
increase it. (This is consistent with the fact that noise can never increase informa-
tion.) In contrast, the von Neumann entropy S(ρ) is not monotonic under quan-
tum operations. We saw, for example, that (i) a depolarizing channel transforms a
pure state into a mixed state, thereby increasing the von Neumann entropy; whereas
(ii) the amplitude damping channel takes a mixed state to the pure state (since the
excited atom decays to its ground state), thereby reducing the von Neumann entropy.
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Note: In the case (ii), the decrease of S(ρ) should not be looked upon as an infor-
mation gain. This is because every mixed state decays to the ground state under
repeated actions of the amplitude damping channel, and hence we lose the ability to
distinguish between different possible preparations of the mixed state.

7.4 Capacities of a Noisy Quantum Channel

In the last section we obtained an upper bound to the maximum amount of classi-
cal information that could be sent to Bob via a noiseless channel by Alice, if she
encoded each classical message (symbol) x (emitted by a source with probability
px ) into a quantum state ρx . This upper bound was given by the Holevo χ quantity

χ(px , ρx ) = S
( ∑

x

pxρx

)
−

∑

x

px S(ρx ). (120)

Now let us consider what would happen if the channel between Alice and Bob
was noisy. In particular, let us consider the channel to be discrete, memoryless and
noisy, and let us denote it by the CPT map Φ. In this case, if Alice encodes the
classical message x into the quantum state ρx , as before, then Bob receives the state
Φ(ρx ). Hence, the maximum amount of classical information that Bob can receive
in this case is bounded above by the corresponding χ quantity:

χ({px , Φ(ρx )}) = S
( ∑

x

pxΦ(ρx )
)
−

∑

x

px S(Φ(ρx )). (121)

This observation leads to the following question:
(Q) What is the classical capacity of the discrete, memoryless, noisy channel Φ ?

In other words, how many bits of classical information can we reliably transmit
per use of the noisy channel Φ? The notion of reliability that we shall use is the
following: Assume that the sender, Alice, encodes each of her messages in a large
“block,” e.g., in a quantum state of n qubits, which she sends to the receiver through
multiple (n) uses of the channelΦ. Then the transmission is said to be reliable if the
probability of error in decoding the state that the receiver, Bob, gets, goes to zero as
the block size (n) is made larger and larger.

Before answering this question, I would like to point out that unlike a classical
channel, a quantum one has various different capacities The capacity of a classical
communications channel is the maximum achievable rate (in bits per channel use) at
which classical information can be transmitted through the channel, with arbitrarily
low probability of error. Shannon’s noisy channel coding theorem gives an explicit
expression for the capacity. Hence, the capacity of a classical communications chan-
nel is unique and is given by a single numerical quantity. A quantum channel, in
contrast, has various distinct capacities. This is because there is a lot of flexibility
in the use of a quantum channel. The particular definition of the capacity which is
applicable depends on the following:
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• whether the information transmitted is classical or quantum;
• whether the sender (Alice) is allowed to use inputs entangled over various uses

of the channel (e.g., she could have an entangled state of two qubits and send the
two qubits on two successive uses of the channel) or whether she is only allowed
to use product inputs.

• whether the receiver (Bob) is allowed to make collective measurements over var-
ious outputs of the channel or whether he is only allowed to measure the output
of each channel use separately;

• whether the sender and the receiver have an additional resource like shared entan-
glement, e.g., Alice and Bob could, to start with, each have a qubit of an EPR
pair.

In this chapter, we shall only consider the transmission of classical information
through a noisy quantum channel Φ. Let us first briefly return to the example that
we had considered (see Sect. 7.2). In that example, Alice encoded each equiprobable
classical message x ∈ {1, 2, 3} into pure states ρx = |ψx 〉〈ψx |, where the |ψx 〉 were
given by (90). We found that χ = S(ρ) = 1 (since ρ = 1/2), whereas the mutual
information (under the optimal POVM) was given by H(X : Y ) = log 3−1 - 0.585
bits/qubit. Hence the Holevo bound Iacc ≤ χ was not saturated. In Problem 7.1 you
will prove that instead of encoding each classical message into the polarization state
of a single photon (i.e., into a single qubit) if

• Alice encodes each classical message into the polarization states of two photons
(i.e., two qubits)

x �→ ρ̂x := |Ψx 〉〈Ψx | , (122)

where

|Ψx 〉 = |ψx 〉 ⊗ |ψx 〉 , (123)

with |ψx 〉 given by (90) and sends these two qubits to Bob through two successive
uses of the noiseless channel, and if

• Bob does a collective measurement on the two qubits that he receives (instead of
measuring them individually),

then the mutual information is increased to approximately 0.685 bits/qubit. We
hence see that encoding a classical message into multiple qubits and using collective
measurements on these qubits results in a better transmission of classical informa-
tion through the noiseless channel.

The same principle would hold in the case of a memoryless, noisy channel Φ.
Hence, even if the channel was noisy, Alice would encode each of her messages
into multiple (say n) qubits and send them to Bob through multiple (n) uses of the
channel. Bob would then do a collective measurement on the qubits that he received.
However, Alice has two choices. She could either encode her messages into product
states or encode them into entangled states. To explain these choices consider n = 2.
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Alice could encode her message x into a product state (as in the example of the
noiseless channel previously considered)

ρ̂x = |Ψx 〉〈Ψx | = |ψx 〉〈ψx | ⊗ |ψx 〉〈ψx | , (124)

in which case Bob would receive the two qubit state

Φ⊗2(ρ̂x ) = Φ(|ψx 〉〈ψx |)⊗Φ(|ψx 〉〈ψx |) . (125)

However, Alice could, alternatively, encode each message x into an entangled state
of two qubits (say an EPR pair):

x �→ ρ̂x = |Ψx 〉〈Ψx | , (126)

where

|Ψx 〉 = 1√
2
|00〉 + |11〉 , (127)

and send the two qubits of the EPR pair to Bob through two uses of the chan-
nel. In this case Bob would receive the state Φ⊗2(ρ̂x ), which is not expressible as
a product of two single qubit states. Hence the two different encodings by Alice
lead to important differences in the mechanism of information transmission. In fact,
whether using entangled states as inputs to a noisy quantum channel increases its
classical capacity, is an important open question in quantum information theory.

7.5 Classical Capacity of a Quantum Channel

Let us consider the transmission of classical information through a quantum chan-
nel. We shall see later that any arbitrary quantum channel,Φ, can be used to transmit
classical information, provided the channel is not simply a constant (i.e., provided
Φ(ρ) �= constant, for all ρ).

Consider the following scenario: Suppose Alice has a finite set M of classical
messages, which she wants to send to Bob, through a discrete, memoryless, quantum
channel Φ. She is allowed to use the channel many times. She encodes a message
M ∈M in a quantum state, say, a state ρ(n)M of n qubits. She then sends this state to
Bob through n uses of the channel Φ.

Bob receives the output σ (n)M = Φ⊗n
(
ρ
(n)
M

)
of the channel and does a suitable

measurement on it, in order to infer what the original message was. Let his mea-
surement be described by a POVM, EM being the POVM element corresponding to
the message M . The probability of inferring the message correctly is given by

Tr
(
σ
(n)
M EM

)
. (128)
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Fig. 4 Transmission of classical information through a product channel

The probability of error corresponding to the message M is thus

(
1− Tr

(
σ
(n)
M EM

))
, (129)

whence the average probability of error is given by

p(n)av =
∑

M∈M
(

1− Tr
(
σ
(n)
M EM

))

|M| . (130)

The rate of information transmission is the number of bits of classical message that
is transmitted by each qubit. It is given by

R := lim
n→∞

log |M|
n

. (131)

The transmission of classical information through the channel Φ under this scheme
is said to be reliable if p(n)av → 0 as n → ∞. As in the classical case, a rate R
(defined by (131)) is achievable if there exists a suitable encoding M �→ ρ

(n)
M and

a decoding given by a POVM {EM }, for which the transmission is reliable. The
capacity of the channel is defined as the maximum achievable rate, the maximum
being taken over all possible encodings of the channel. We want to compute the
maximum achievable rate at which Alice can send information to Bob under the
above protocol. In other words, we want to find the capacity of the noisy quan-
tum channel Φ, for transmission of classical information. Unfortunately, this is not
known yet.

What is known, however, is the classical capacity of Φ in the special case in
which Alice is allowed to encode her messages using only product states, i.e.,
states of the form ρ

(n)
M = ρ1 ⊗ ρ2 ⊗ . . . ⊗ ρn , where ρ1, ρ2, . . . , are input to

the channel on separate uses. Bob is allowed to decode the output of the channel by
performing collective measurements over multiple uses of the channel. The capac-
ity of the channel in this case is referred to as the product state capacity and is
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usually denoted as C (1)(Φ).8 The product state capacity is given by the celebrated
Holevo–Schumacher–Westmoreland (HSW) theorem [12, 6]:

Theorem 5 (HSW) The product state capacity of a quantum channel Φ is given by

C (1)(Φ) = χ∗(Φ), (132)

where χ∗(Φ) is the Holevo capacity of the channel and is defined as follows:

χ∗(Φ) := max{pi ,ρi }
χ({pi , Φ(ρi )}), (133)

where

χ({pi , Φ(ρi )}) := S
(
Φ

( ∑

j

p jρ j

))
−

∑

j

p j S
(
Φ(ρ j )

)
. (134)

The maximum in (133) is taken over all ensembles {pi , ρi } of possible input states
ρi of the channel, with pi ≥ 0,

∑
i pi = 1.

Information transmission through a noisy quantum channel is improved when the
outputs of the channel are more distinguishable.

The Holevo chi-quantity χ({pi , Φ(ρi )}) is a measure of the distinguishability of
the ensemble of output statesΦ(ρi ). It might seem natural that the distinguishability
of the output states would be maximized by maximizing the distinguishability of
the input states, i.e., by using a set of mutually orthogonal input states. However,
this intuition has been proved to be false (see, e.g., [2, 4]), and hence, the Holevo
capacity can indeed be achieved on non-orthogonal input states.9

The HSW theorem tells us that Alice can reliably transmit classical information
to Bob, through a quantum channel Φ, using product input states, at any rate below
C (1)(Φ).
An interesting application of the HSW theorem is the following lemma.

Lemma 1 Any arbitrary quantum channel Φ can be used to transmit classical
information, provided the channel is not simply a constant.

Proof This can be seen as follows. IfΦ is not a constant, then there exist pure states
|ψ〉 and |φ〉 such that

Φ
(
|ψ〉〈ψ |

)
�= Φ

(
|φ〉〈φ|

)
. (135)

8 The superscript (1) is used to denote that Alice is required to use the many available copies of
the channel one at a time, encoding her messages into product states.
9 The maximum in (134) is potentially over an unbounded set. However, it can be shown that one
can restrict the maximization to pure state ensembles containing at most d2 elements, where d is
the dimension of the Hilbert space at the input to the channel (see, e.g., [13]).



Quantum Entropy and Information 211

Consider the ensemble
{

p1 = p2 = 1/2 , ρ1 = |ψ〉〈ψ | , ρ2 = |φ〉〈φ|
}
. (136)

From (135) and the concavity of the von Neumann entropy (see chapter “Hilbert
Space Methods for Quantum Mechanics”, Sect. 3.1) it follows that χ({pi , Φ(ρi )) >

0. Hence, χ∗(Φ) > 0, which in turn implies that the quantum channel Φ can trans-
mit classical information if the latter is encoded into quantum states which are then
sent through the channel. ��

The product state (or Holevo) capacity of a discrete memoryless quantum chan-
nel can be generalized to give the classical capacity of the channel, i.e., its capacity
for transmission of classical information in the absence of the restriction of product
state inputs.

The generalization is achieved by considering inputs which are product states
over uses of blocks of n channels, but which may be entangled across different
uses within the same block. The classical capacity Cclassical is obtained in the limit
n →∞:

Cclassical = lim
n→∞

1

n
χ∗

(
Φ⊗n

)
, (137)

with

χ∗
(
Φ⊗n

)
:= max

{pi ,ρi }:ρ j∈B(H⊗n)
S

(
Φ⊗n

( ∑

j

p jρ j

))−
∑

j

p j S
(
Φ⊗n(ρ j )

)
(138)

being the Holevo capacity of the blockΦ⊗n of n channels. In (138) ρ = ∑
j p jρ j ∈

B(H⊗n) . The HSW Theorem naturally leads to the following question:

(Q) Can one increase the classical capacity of a quantum channel by using entan-
gled input states ?

This question is related to an important conjecture, namely, the additivity of the
Holevo capacity, which is as follows: For two given quantum channels, Φ1 in H1
and Φ2 in H2:

χ∗(Φ1 ⊗Φ2) = χ∗(Φ1)+ χ∗(Φ2). (139)

If Φ1 = Φ2 = Φ, where Φ is a memoryless quantum channel, the product channel
Φ1 ⊗ Φ2 ≡ Φ⊗2 denotes two successive uses of the channel. Let us see how the
conjecture (139) is related to the question (Q) above.

The Holevo capacity is superadditive, i.e., χ∗(Φ1 ⊗ Φ2) ≥ χ∗(Φ1) + χ∗(Φ2).
This follows from the superadditivity of the Holevo χ quantity, which can be proved
by expressing χ in terms of a relative entropy (as in (118)) and using the fact that
the relative entropy is convex in each of its arguments (a consequence of (32)). See
Problem 7.3. If the Holevo capacity is additive then χ∗(Φ⊗n) = nχ∗(Φ), which
implies that Cclassical(Φ) = χ∗(Φ), the Holevo capacity of the channel Φ. The
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latter is a fixed quantity characteristic of the channel. Hence, if the Holevo capacity
is additive then the capacity of the quantum channel to transmit classical information
cannot be increased by using entangled inputs.

The validity of the additivity conjecture (139) had been proved for some classes
of quantum channels. However, whether the additivity holds “globally,” i.e., for all
quantum channels, was an open problem of quantum information theory10 until very
recently. Peter Shor had showed [15] that the additivity conjecture for the Holevo
capacity is equivalent to the additivity conjecture for the minimum output entropy of
the channel. Given a channel Φ, its minimum output entropy Hmin(Φ) is defined as

Hmin(Φ) = min|ψ〉 H (Φ(|ψ〉〈ψ |)) . (140)

The additivity conjecture for the minimum output entropy is that for all channels Φ1
and Φ2, the following identity holds:

Hmin(Φ1 ⊗Φ2) = Hmin(Φ1)+ Hmin(Φ2). (141)

In fact, Shor proved that these two additivity conjectures are equivalent, in the sense
that if one of them holds for all channels then the other also holds for all channels.
In September 2008, Matthew Hastings proved a counterexample to the additivity of
the minimum output entropy [3], and hence by Shor’s equivalence, it follows that
the Holevo capacity is not additive for all quantum channels.

Exercise 3

1. Consider the example studied in the Sect. 7.2. We found that χ = S(ρ) = 1
(where ρ = (1/3)

∑
x ρx ≡ 1/2), whereas the mutual information, under the

optimal POVM done by Bob (discussed in the Sect. 7.2) was given by H(X :
Y ) = log 3 − 1 - 0.585 bits/qubit. Hence the Holevo bound Iacc ≤ χ was not
saturated.

Now let Alice encode each classical message into polarization states of two
photons (i.e., two qubits)

x �→ ρ̂x := |Ψx 〉〈Ψx | , (142)

where

|Ψx 〉 = |ψx 〉 ⊗ |ψx 〉 , (143)

with |ψx 〉 given by (90). She sends these two qubits to Bob through two successive
uses of the noiseless channel.

10 Recall that, in contrast, the capacity of a classical communications channel is always additive
(see Exercise 2).
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(a) Compute the eigenvalues of the density matrix

ρ := 1

3

3∑

x=1

ρ̂x ≡ 1

3

3∑

x=1

|Ψx 〉〈Ψx |. (144)

Evaluate its von Neumann entropy and show that the accessible information per
qubit is less than 0.75.

Bob does a collective measurement characterized by the operators Ex , x =
1, 2, 3, where

Ex = G−1/2|Ψx 〉〈Ψx |G−1/2, (145)

with G := ∑3
x=1 |Ψx 〉〈Ψx |. (Note: Such a measurement is called a square root

measurement.)

(b) Evaluate the operators Ex , x = 1, 2, 3 and show that they form a POVM.
Show that the probability that the outcome of Bob’s measurement is y, given that
Alice’s message was x is given by the following:

p(y|x) = 0.9714 for x = y,

p(y|x) = 0.0143 for x �= y.
(146)

2. Use the HSW theorem to find the product state capacity of the depolarizing chan-
nel, Φ, defined by

Φ(ρ) = pρ + (1− p)
1

2
. (147)

3. Prove that

χ(Φ1 ⊗Φ2) ≥ χ(Φ1)+ χ(Φ2), (148)

where Φ1 and Φ2 are quantum channels (linear CPT maps) and

χ(Φ) := S
( ∑

i

piΦ(ρi )
)
−

∑

i

pi S(Φ(ρi )), (149)

is Holevo χ quantity corresponding to the ensemble {pi , ρi } of input states to the
channel Φ.

4. What is the maximum number of classical bits of information that Alice can send
to Bob by transmitting n unentangled photons to him via a memoryless, noisy,
quantum channel?
Hint: use the Holevo bound.
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Photonic Realization of Quantum
Information Protocols

M. Genovese

1 Introduction

Quantum optics is a discipline whose main purpose is the study of electromag-
netic fields and of their interactions with atoms and matter when quantum features
are relevant: a part of quantum field theory concerning the electromagnetic field
in interaction with fermions (quantum electrodynamics) or with atoms and mat-
ter (where the interaction is usually given by effective Hamiltonians, see chapter
“Field-Theoretical Methods”, Sect. 4.2).

Quantum optics is now a huge field whose description is largely beyond the pur-
pose of these lectures. Some basic facts are contained in chapter “Field-Theoretical
Methods” of this book, while for more details the reader specialistic books like [86].
Here we will only consider some very specific parts of this field, which have direct
interest for applications to quantum information.

Indeed, as we will discuss, most of the realizations of quantum communication
protocols have been performed by using states of the electromagnetic field. Also,
interesting progresses toward quantum computation protocols (see chapter “Quan-
tum Algorithms”) have been obtained with photon-based schemes. This chapter
offers an overview of these results; in particular, we will focus upon sources of
single and entangled photons and experiments realized with them: this will require
a description of parametric downconversion that is the most used physical phe-
nomenon in all these realizations.

1.1 The Parametric Downconversion

The parametric downconversion (PDC), or parametric fluorescence, is a quantum
effect without classical counterparts (see Fig. 1). It consists of a spontaneous decay,
inside a nonlinear medium with non-zero second-order susceptibility χ(2), of one
photon from a pump beam (usually generated by a laser) into a couple of photons

M. Genovese (B)
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Fig. 1 Picture of type I PDC emission produced in a LiIO3 crystal pumped by a UV laser beam
(at 351 nm). The bright spot is an injected laser at 789 nm and the small spot is the stimulated
emission at 633 nm pointing out the correlated direction

(sometimes dubbed bi-photon) conventionally, and arbitrarily, called signal and idler
(for an extensive description of this phenomenon see [86]). The media useful for
these applications are crystals with a significant second-order dielectric susceptibil-
ity, i.e., crystals where in the polarization vector expansion

Pi = χ1
i j Ej + χ2

i jk Ej Ek + · · · , (1)

the term χ2
i jk is non-negligible and therefore one has significant contributions from

the interaction of three electromagnetic fields in the Hamiltonian density

1

2μ0
B2 + 1

2
E · D , D = ε0E+ P . (2)

Among them one can mention Beta-barium borate (BBO), lithium iodate, potassium
titanyl phosphate (KTP), and others.

This process obeys (phase-matching laws) energy conservation

ω0 = ωi + ωs (3)

and (exactly, in the case of an infinite length crystal) momentum conservation

k0 = ki + ks , (4)

where ω0, ωi , ωs are the frequencies and k0, ki , ks are the wave vectors of pump,
idler, and signal photon, respectively. Furthermore, the two photons are produced
at the same time (within few tens of femtoseconds, as measured by means of an
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interference technique). The emission ranges from the wavelength of the pump field
up to the infrared region (being limited by the absorption of the crystal).

The probability of a spontaneous decay into a pair of correlated photons is usu-
ally very low, of the order of 10−9 or lower (higher values can be obtained in
nano-structured materials, as periodically poled crystals). Thus, with typical pump
power of the order of some milliwatts, the PDC emission lies at the levels of photon
counting regime. Since the photons are produced in pairs and because of the energy
and momentum conservation restrictions, the detection of one photon in a certain
direction and with a given energy indicates the existence of the pair correlated one,
with definite energy and travelling in a well-defined direction.

To fulfill phase-matching conditions, differently polarized waves must be used,
leading to two different kinds of PDC emission.1

In type I PDC, both photons are produced with the same polarization, ordinary
in negative crystals (no > ne) and extraordinary in positive crystals (no < ne),
orthogonal to that of the pump photon,

|k0| = 2π

c
√

cos2 θ/n2
o + sin2 θ/n2

e

, (5)

extraordinary in negative crystals and ordinary in positive ones.
Photons of equal wavelength are emitted on concentric cones centered on the

pump laser direction (see Fig. 2, left), whose diameter depends on the angle between
the pump beam and the optical axis of the crystal, the phase-matching angle θ .
When projected into a plane, conjugated photons are on the same diameter and

Pump
beam

V

H

type II
nonlinear
crystal

k1

k2

Pump
beam

Type I
nonlinear
crystal

k1

k2

Fig. 2 Left: type I PDC. The two circumferences (continuous and dashed) correspond to two dif-
ferent wavelengths. The spots indicate the directions of emission of two entangled photons. Right:
type II PDC emission. Two circumferences, which are emitted degenerate photons (continuous
line) and correlated photons of different wavelengths (dashed lines), are shown. H and V denote
horizontal and vertical polarization, respectively. The two spots denote the directions of entangled
photons

1 We limit the following discussion to uniaxial crystals.
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opposite with respect to the center of the two concentric circles corresponding to
their wavelengths. The regime when the phase-matching angle is such that the cor-
related photon pairs at half wavelength of the pump beam are emitted in the same
direction is called collinear degenerate regime.

In a type II PDC, one photon has equal polarization to that of the pump photon,
while the other has an orthogonal polarization. For a suitable phase-matching angle
(see later), they are emitted on intersecting circumferences (see Fig. 2, right).

From a theoretical point of view, briefly, the process of PDC in a crystal with
active region of volume V can be described2 by the Hamiltonian (where the sum is
only over those modes that are allowed by energy and momentum conservation):

H = 1

L3

∑

k,s

∑

k′,s′

∫
dω0 El(ω0) χ

(2)
i, j,l(ω0, ω, ω

′)

× ε∗k,s ε∗k′,s′
∫

V
d3r

(
e−i (k0−k−k′)·r a(k, s) a(k′, s′)+ h.c.

)
, (6)

where h.c. stays for hermitean conjugate, while k0, k, k′ are the quadri-momenta of
the pump, idler, and signal photon, respectively, r is the quadri-vector space–time,
El(ω0) is the vector amplitude of the pump (strong enough to be treated as a classi-
cal field, but not necessarily perfectly mono-chromatic), while a(k, s) and a(k′, s′)
are the annihilation operators for the produced photons (with polarization s, s′).
When the pump intensity is sufficiently small, one operates in the so-called low-gain
regime. In this case one is allowed to keep only the first order in the series expansion
of the evolution operator acting on the vacuum (higher order terms would provide
a multi-photon component), obtaining a state in the following form (lm denotes the
three sides of the nonlinear dielectric medium supposed to be a parallelepiped):

|Ψ (t)〉 = exp
(
− i

h̄

∫
H(t ′) dt ′

)
|0〉

- |0〉 − i

h̄ L3

∑

k,s

∑

k′,s′

∫
dω0 El(ω0)χ

(2)
i, j,l(ω0, ω, ω

′) (ε∗k,s)i (ε∗k′,s′) j (7)

×
3∏

m=1

2 sin
(
(k0 − k − k′)mlm/2

)

(k0 − k − k′)m lm
δ(ω + ω′ − ω0) |k, s〉 |k′, s′〉 ,

where the term sinc(x) = sin(x)/x follows from integration over the crystal volume
and keeps explicitly into account the non-exact phase-matching due to the finite
dimension of the nonlinear medium.

Thus correlated wavelengths are slightly spread around the perfect phase-
matching condition (3). Perfect conservation of energy, δ(ω + ω′ − ω0), derives

2 The form of this “effective” Hamiltonian can be deduced from (rather involved) microscopic
calculations, e.g., see [116].
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from assuming a plane wave as pump beam (with infinite temporal extension). The
sum over k, k′ does not allow factorization into a product of signal and idler states:
the state described by (7) is therefore entangled (see chapter “Bipartite Quantum
Entanglement”). As we shall describe in detail, it can be used in various quantum
information tasks.

1.2 Heralded Photon Sources

A first interesting application of PDC is that, due to the property of strong temporal
and spatial correlation of emission of the photon pairs, one can realize a “heralded
single photon source,” where the observation of one photon of the pair “certifies”
the presence of the correlated one at a specific time, frequency and in a determined
direction. From an experimental point of view, one needs to identify two correlated
photon directions by spatial (pinholes) and spectral (interference filters) selection
and use the observation of one photon as a trigger signal, certifying the presence of
the correlated one.

These experimental achievements represent a first fundamental step toward appli-
cations in quantum information; indeed, they allow the generation of single qubits to
be used in quantum information protocols. Incidentally, these schemes also provide
absolute sources of light that can be used for quantum metrology, e.g., for calibrat-
ing detectors [22, 20] (indeed, the quest for accurately calibrated detectors is an
important issue in many quantum information protocols).

Anyway, this technique has some limitations. First of all, the PDC emission is
not deterministic and therefore one obtains one photon in a certain temporal win-
dow only with a finite probability. Furthermore, one also has a non-zero probability
that two or more photons might be emitted within a same temporal window. In
principle, this problem could be solved by using photo-detectors able to discrimi-
nate among more photons. Nevertheless, at the moment, photo-detectors well suited
for this purpose are not available. Indeed, one would need a congruous linearity
in the internal current amplification process: each single electron produced by the
different photons in the primary step of the detection process (either ionization or
promotion to a conduction band) should experience the same average gain and this
gain should have sufficiently low spread. The fulfillment of both these requisites is
necessary for the charge integral of the output current pulse to be proportional to the
number of detected photons. Few examples exist of photo-detectors that can operate
as photon counters and each one has some drawback. Among these, photomultiplier
tubes (PMTs) [142] and hybrid photo-detectors [59] present low quantum efficiency,
since the detection starts with the emission of an electron from the photocathode.
Solid-state detectors with internal gain, in which the nature of the primary detec-
tion process ensures higher efficiency, are still under development. Highly efficient
thermal photon counters have also been realized as prototypes, though their oper-
ating conditions are still extreme (cryogenic conditions) to be suited for common
use [68, 98, 35]. Also, methods based on statistical sampling for reconstructing the
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density matrix of an optical state [91, 146, 106, 141] (as quantum tomography) are
not very useful for this purpose.

For this reason PDC “heralded photon sources” do not represent a perfect solu-
tion for realizing a single photon source and some alternatives are under develop-
ment as quantum dots [109, 83] and color centers in diamonds [10, 140, 72, 58, 118].
Further methods based on two-photon emission from semiconductor structure [108]
or single photon emission by controlled molecular fluorescence [23] and from nano-
tubes [61] are still at a very seminal level, far from applicative possibilities.

Nevertheless, these systems present various drawbacks as well: low collection
efficiency and relatively large multi-photon component for nano-diamonds, diffi-
culty in producing quantum dots with defined characteristics, and so on. Thus,
almost all experiments in quantum information requiring single photon sources and
performed up to now have been built with PDC sources.

2 Photon Entanglement

As discussed in chapters “Quantum Cryptography” and “Quantum Algorithms”,
entanglement represents a fundamental physical resource for quantum information
protocols. For pure states, a state of two or more particles is entangled when it
cannot be factorized into a tensor product of single-particle states, namely, as stated
in the original Schrödinger definition [114], it describes a compound systems whose
subsystems are not probabilistically independent (see chapter “Bipartite Quantum
Entanglement”).

In this section we will present some of the sources of entangled states of photons,
which have been realized in the last years. Their use is widespread and they will
recur in various experimental realizations of quantum information protocols, some
of them being the focus of the next paragraphs.

Historically, before being applied in quantum information, such sources had been
used for studies concerning the foundations of quantum mechanics; in particular, to
test local realism through Bell inequalities (see chapter “Quantum Probability and
Quantum Information Theory”, Sect. 2). Inequalities that, albeit born within these
basic field, later found widespread applications in quantum information.

Therefore, before discussing in more detail entangled photon sources, we present
an introduction to Bell inequalities that complements the more abstract one pre-
sented in chapter “Quantum Probability and Quantum Information Theory” (for a
review paper, see [47]).

2.1 The Bell Inequalities

Bell inequalities were introduced for testing possible local realistic alternatives
to standard quantum mechanics (see chapter “Quantum Probability and Quantum
Information Theory”, Sects. 2.4 and 3.6).
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This problem was raised in 1935 by Einstein, Podolsky, and Rosen [37]. With the
purpose of discussing if quantum mechanics is a complete theory, they introduced
the concept of element of reality according to the following definition: If, without
disturbing in any way a system, one can predict without any uncertainty the value
of a physical quantity, then there is an element of physical reality corresponding
to this quantity. They formulated also the reasonable hypothesis that, because of
special relativity, any non-local action should be forbidden, with the consequence
that a measurement performed on a subsystem cannot influence a measurement on
another subsystem when they are space-like separated. Their conclusions were that
either one of their hypothesis was wrong or quantum mechanics was not a complete
theory, in the sense that not every element of physical reality had a counterpart in
the theory.

In the following, we elaborate on this topic following Bohm’s formulation. Let
us consider a singlet state of two spin 1/2 particles

|ψ0〉 = | ↑〉| ↓〉 − | ↓〉| ↑〉√
2

, (8)

where | ↑〉 and | ↓〉 represent a single particle of spin up and down, respectively. This
state is manifestly entangled. The total spin of the pair in this state is zero; however,
before any spin measurement is performed, the spin components of each one of
the two particles are undefined. If we let the two particles get spatially separated
and then measure the z-component of the spin of the first particle, we also know
the z-component of the spin of particle 2 (being opposite to the one of particle 1)
without disturbing in anyway this second particle. Thus the z-component of the spin
of the second particle is an element of reality according to the previous definition.

But, since the singlet state is invariant under rotations, we could refer to any other
axis (as x or y, etc.): thus we can argue that any other spin component of particle 2 is
an element of reality. However, spin components on different axes are incompatible
variables in quantum mechanics, to which one cannot simultaneously assign definite
values. Thus, Eistein, Podolsky, and Rosen argued that quantum mechanics is not a
complete theory, since it is not able to predict all elements of reality.

This statement was the starting point of the development of the so-called local
hidden variable (LHV) theories, i.e., of theories based on the idea that it may exist
a deterministic (and local) theory describing nature so that quantum mechanics is
only a statistical version of a more fundamental structure. The situation is somehow
alike to statistical thermodynamics: this theory describes probabilistically systems
consisting of many particles, each of them behaving in a perfectly deterministic way
according to the classical equations of motion.

In little more detail, in a hidden variable theory every particle has a perfect
assigned value for each observable, determined by a hidden variable x . A statistical
ensemble of particles has a certain distribution ρ(x) of the hidden variable and thus
the expectation value of an observable A is given by the following:

〈A〉 =
∫

dx ρ(x) A(x) . (9)
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Of course, considering the huge success of quantum mechanics in predicting many
different experimental data, the average 〈A〉 given by (9) must reproduce the quan-
tum mechanical predictions.

The next fundamental step in discussing possible LHV extensions of quantum
mechanics was the 1964 discovery of Bell [8] that any realistic LHV theory must sat-
isfy certain inequalities, which can be violated by quantum mechanics, thus allowing
an experimental test of the validity of quantum mechanics against LHV theories.
Demonstration of Bell inequalities is quite a simple algebraic exercise. We consider
here the form proposed by Clauser and Horne (many different forms of Bell inequal-
ities exist, all of them substantially equivalent). Let us consider a source emitting
a pair of entangled particles; the first particle goes to detector 1 and the second to
detector 2. Let us suppose that before being detected by detector i , a certain property
θi is measured on the impinging particle. For example, if the particles are entangled
in spin, then θi is the angle defining the direction (with respect to the z-axis) along
which we are going to measure the spin; for polarization-entangled pairs of photons
it represents the setting of a polarizer and so on. The Clauser–Horne sum reads as
follows:

CH = P(θ1, θ2)− P(θ1, θ
′
2)+ P(θ ′1, θ2)+ P(θ ′1, θ ′2)− P(θ ′1)− P(θ2) , (10)

where

1. P(θ1, θ2) represents the joint probability of observing a particle in 1 with the
selection θ1 and, in coincidence, a particle in 2 with the selection θ2 (apices
denote other angles’ choices);

2. P(θi ) denotes the probability of observing a single particle at i with selection θi .

If these probabilities derive from a local hidden variable theory, calling the hid-
den variable x and denoting by ρ(x) the probability distribution for the hidden
variable, we have

P(θi ) =
∫

dx ρ(x) P(θi , x) , (11)

and

P(θi , θ j ) =
∫

dx ρ(x) P(θi , θ j , x) . (12)

If the theory is local, then the outcomes of the measurement in 1 cannot depend on
the choice of θ2 and vice versa. Therefore, we have the following:

P(θ1, θ2, x) = P(θ1, x) · P(θ2, x) . (13)

In order to demonstrate the Clauser–Horne inequality, we construct a simple alge-
braic relation for four variables: x, x ′, which lie between 0 and X (X ≤ 1) and y, y′
which lie between 0 and Y (Y ≤ 1):

xy − xy′ + x ′y + x ′y′ − x ′Y − y X ≤ 0 . (14)
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In fact, for x < x ′, one can rewrite the right-hand part of (14) as

x (y − y′) + (x ′ − X) y + (y′ − Y ) x ′ ≤ (x ′ − X) y + x (y − Y ) , (15)

which is negative. On the other hand for x ≥ x ′, one rewrites the right-hand part
of (14) as

(x − X) y + (y − Y ) x ′ + (x ′ − x) y′ , (16)

which is also negative. By substituting P(θ1, x) = x , P(θ ′1, x) = x ′, P(θ2, x) = y,
P(θ ′2, x) = y′, and X = 1, Y = 1, we finally obtain

P(θ1, θ2)− P(θ1, θ
′
2)+ P(θ ′1, θ2)+ P(θ ′1, θ ′2)− P(θ ′1)− P(θ2) ≤ 0 . (17)

This relation must hold in any LHV theory; on the other hand, if the probabilities
are evaluated according to the rules of quantum mechanics, for a suitable choice of
the parameters θi , the inequality is violated.

Let us notice that the proof does not require that the LHV theory be deterministic,
namely that the outcomes of a measurement be fixed by the hidden variables, but
only the less restrictive request that the single measurement probability be deter-
mined by them.

The obvious relevance of this result is that, at least in principle, one can now
exclude any local realistic hidden variable theory just observing a violation of
this (or another equivalent) inequality. On the other hand, of course, testing Bell
inequalities does not allow to exclude non-local hidden variable theories (where
non-locality must, however, be such as not to allow faster-than-light communication
of information in order to be compatible with special relativity) [47].

Unluckily, experimental verifications of the above inequality are not an easy task.
Experimentally, one measures the number N (θ1, θ2) of coincidences, while in (17)
P(θ1, θ2) = N (θ1, θ2)/N appears, where N is the total number of pairs emitted by
the source, which is not really measurable because a relevant fraction of the pairs is
usually lost. Anyway, when considering the ratio

R = N (θ1, θ2)− N (θ1, θ
′
2)+ N (θ ′1, θ2)+ N (θ ′1, θ ′2)

N (θ ′1)+ N (θ2)
, (18)

N cancels between numerator and denominator and for a hidden variable theory, it
is always R ≤ 1, while in quantum mechanics R can reach the value 1.207.

Before concluding this paragraph, it is worth mentioning that various other
inequalities have been derived in the course of the years. Here we only mention
the one obtained by Clauser, Horne, Shimony, and Holt [32] which is one of the
most often used in experiments:

S =
∣∣∣C(a, b)− C(a, c)

∣∣∣+ C(b′, b)+ C(b′, c) ≤ 2 , (19)
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where C(a, b) is the expected value for joint measurements whose outcomes are
distributed according to the probabilities in (12).

2.2 First Sources of Entangled States of Photons

Since the end of the 1960s, many interesting experiments have been devoted to test-
ing Bell inequalities, leading to a substantial agreement with quantum mechanics,
hence disfavoring LHV theories. However, up to now, no experiment has yet been
able to exclude such theories in an absolute manner. In fact, so far, due to the low
total detection efficiency, one has always been forced to introduce, at least, one
further additional hypothesis, stating that the observed sample of particle pairs is a
faithful sub-sample of the initial set of pairs. This problem is known as detection
or efficiency loophole and remains the main limitation to conclusive tests of local
realism. Indeed if the hidden variables determine not only the result of the measure-
ment but also if the particle is detected or not then LHV models in agreement with
present experiments can be built [47].

Many different systems have been considered in the literature (as entangled pairs
of ions,3 K K , ΛΛ, etc.) for realizing tests of Bell inequalities, but up to now most
experiments have been realized with entangled photons since all these other systems
present some drawbacks [47].

The past search for an efficient source of entangled photons for Bell inequality
tests can now be looked at as the development of sources that would later be used in
quantum information protocols, whereby the violation of Bell inequalities represents
their figure of merit.

Historically, the first experiments were performed, in the 1970s and 1980s, by
using polarization-entangled photon pairs produced either in cascade atom decays
(visible light) or in positronium decays (gamma rays).4

This series of experiments culminated in 1982 with the celebrated Orsay’s experi-
ment [3]. Here space-like separation between the two detections was obtained by the
use of rapid acousto-optic switches operating at 50 MHz, which were selecting dif-
ferent paths for the incident photons in a way that no communication of the selected
basis for the polarization analysis was possible between the two different parts of the
apparatus. Thus the two photo-detections after polarization selection were really two
non-causally connected events. Bell inequalities were violated (modulo the detec-
tion loophole) more than 5 standard deviations. Nevertheless, collection efficiency
was very low (with coincidences ranging between 0 and 40 s−1 against a typical
rate of production of pairs of 5 × 107 s−1). This low value, even smaller than the
previous ones, was mainly due to the necessity of reducing the divergence of the

3 A recent experiment [60] based on the use of Be ions has reached very high efficiencies (around
98%), but in this case the two subsystems (the two ions) are not really separated systems during
the measurement and the test cannot be considered a real implementation of a loophole-free test of
Bell inequalities, even if it represents a relevant progress in this sense.
4 In this case detection efficiency was very high, but the measurement of polarization was indirect.



Photonic Realization of Quantum Information Protocols 225

beams in order to get a good switching. Thus, detection loophole was very far from
being eliminated.

In the 1990s, a large improvement on this problem was made possible by bright
sources of entangled states of photons based on PDC. These sources are also the
ones which are nowadays applied in quantum information protocols and will be
discussed in the next two paragraphs, after a short introduction to the quantum
description of a beam splitter (BS).

2.3 The Quantum Beam Splitter

A beam splitter is a semitransparent mirror that allows combination of two optical
beams: a necessary element for building interferometers that will be described in
the next paragraph.

Let us denote with 0 and 1 the inputs ports and 2 and 3 the outputs (see Fig. 3).
The quantum description of a BS uses input operators ai (i = 0, 1) and output ones
ai (i = 2, 3) that are actually creation and annihilation operators of Bosonic modes
(see chapter “Field-Theoretical Methods”, Sect. 2.1). The tricky point is that even
if the input beam only concerns port 1, one cannot neglect port 0 (vacuum) if one
wants to preserve the usual commutators. Thus,

a2 = ta1 + ra0 , a3 = ta0 + ra1 , (20)

where r and t are the reflectivity and transmissivity, respectively (that we suppose to
be the same on the two sides). The requests that the canonical commutation relations
(CCR) hold

[
a2, a†

2

]
= 1,

[
a2, a†

3

]
= 0 (21)

lead to the relations

|t |2 + |r |2 = 1, tr∗ + r t∗ = 0 . (22)

BS

a4

a3a2

a1

Fig. 3 The “quantum” beam splitter
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In the following we will also often mention the polarizing beam splitter (PBS):
this is a system where, in a certain basis (for example, horizontal and vertical polar-
ization), one polarization always exits one port and the other polarization the other
port. Again the same rules for vacuum inputs apply (see Exercise 6).

2.4 Phase–Momentum Entanglement

The type I PDC bi-photon state described by (8) presents a phase and momentum
entanglement that can be directly exploited by using two separated interferometers
according to the scheme proposed in [43] and realized as in [105, 15, 75, 128]. Fran-
son’s scheme [43] consists in placing two Mach–Zehnder interferometers, whose
effect can be easily calculated (see exercises) from (20), each on the path of one of
the two entangled photons (see Fig. 4).

If the long arm of the interferometers for the idler and signal photons has a tun-
able phase φi and φs with respect to the short one, the final state is

Ψ f r = 1

2

(
|s1〉 |s2〉 + |l1〉 |l2〉 ei (φ1+φ2) + eiφ1 |l1〉 |s2〉 + eiφ2 |s1〉 |l2〉

)
, (23)

where the subscripts 1, 2 refer to the photon entering the first and the second interfer-
ometers, while s, l denote short and long path, respectively. After the interferometers
the two photons are addressed to detectors; if both have followed the short or the
long path, they arrive in coincidence, otherwise they are lost for the coincidence
window.

The detected photon pairs generate a coincidence rate

Rc ∝ ηiηs〈Ψ f r |a†
i a†

s aias|Ψ f r 〉 = 1

4
ηiηs

(
1+ cos(φ1 + φ2)

)
, (24)

where ηiηs are the detector efficiencies on idler and signal paths, respectively. The
striking fact about this equation is that it can be modulated with 100% certainty

Mach-Zehnder Interf. Mach-Zehnder Interf.

Source

Fig. 4 Franson scheme for generating entangled states of photons. A source emits two energy–time
entangled photons that after having crossed a Mach–Zehnder interferometer are detected by D1 or
D′

1 and D2 or D′
2, respectively
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using either of the widely separated phase plates (i.e., optical elements introducing
a phase shift in the propagating electromagnetic wave). This “non-local” effect was
the one suggested in [43] for testing Bell inequalities, where the parameters to be
set are the phases φi,s .

Of course these entangled states are also perfectly suited for quantum informa-
tion applications. In particular phase entanglement is very well suited for quantum
communication since it can be propagated in fiber without birefringence effects that
affect polarization and thus entanglement.

The specific applications to quantum communication will be discussed later;
instead, we now consider in some more detail the experimental realization of this
kind of sources. For example, in the setup of [15], one of the first realizations of
this kind of schemes, a BBO crystal was pumped by an argon ion laser beam in
collinear regime producing photons pairs at 916 nm. A beam splitter separated the
pair in two orthogonal directions, addressed to the two interferometers. Detectors
were silicon avalanche photodiodes (cooled at −25◦) with a measured efficiency
of 16%, a relatively small value that nowadays is ameliorated by a factor 3–4. A 7
standard deviation violation of Clauser–Horne inequality (17) was observed.

Various more experiments [80, 30, 105, 62, 121] were realized with this kind of
sources. In particular, some experiments are worth mentioning where a long dis-
tance entanglement transmission was performed. Among them one can quote the
one by Tapster et al. [123] where a pair of entangled photons at 820 nm and 1.3 µm
was produced in a lithium iodate crystal pumped by an argon laser at 501.7 nm.
The shorter wavelength photon was immediately addressed to a single-mode fiber
interferometer, while the other passed through a 4.3 km single-mode communica-
tions fiber before reaching the interferometer (1.3 µm is a well-suited wavelength
for propagation in communication fibers). A 86.9% visibility (largely exceeding the
71% classical limit) was obtained.

A separation of more than 10 km was later obtained in [126, 127, 122, 119]. This
experiment is particularly interesting for Bell inequality tests since (together with
another one based on polarization entanglement realized at the same time [135]) it
definitively closes the locality loophole (i.e., the request of having space-like sep-
aration between measurements) with an observed violation of the CHSH inequali-
ties (19) violation of S = 2.92± 0.18. Indeed, it allowed to eliminate also the small
doubts pertaining to the non-random choice of the path of the Orsay experiment
(doubts due to the fact that the polarization measurement choice was driven by a
periodic signal).

Also another kind of entanglement (time-bin), used for applications to quantum
communication, was realized with interferometers and PDC in pulsed regime. The
scheme is based on placing on the pump beam a Mach–Zehnder interferometer
(whose path length difference is large compared to the pump pulse length) before
the nonlinear system where a polarization-entangled pair is generated. The pump
photon can follow the short or the long path originating the superposition [16]

|Ψp〉 = 1√
2

(
|s〉 + eiφ |l〉

)
, (25)
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where |s〉 and |l〉 denote the photon that has followed the short and the long path,
respectively, and φ denotes the phase difference between the two paths. After the
PDC process one achieves the entangled state

1√
2

(
|s〉 |s〉 + eiφ |l〉 |l〉

)
. (26)

In [16] a high visibility, 84%, was measured, again clearly exceeding the upper
limit, 71%, for separable states. Later [124] the robustness of this entanglement to
decoherence was shown for a 11 km fiber propagation.

In summary, phase-entanglement sources have been realized with high visibility
and they represent a very important element for realizing long-distance quantum
communication in fiber as we will discuss later.

2.5 Polarization Entanglement

In the previous paragraph, we have described sources of phase-entangled photons
with important applications in fiber transmission. On the other hand, when dealing
with quantum computation protocols or with communication in open space, polar-
ization entanglement represents an importance resource.

Recently, several bright sources of polarization-entangled states of two photons
have been produced: by type II PDC [45, 77] or by superimposing two type I PDC
emissions, in this case using two thin adjacent crystals [137] or two crystals with an
optical condenser between them [18] or by inserting them in an interferometer [66,
65, 41]. All of them can be used for generating all four Bell states, Φ± and Ψ±.

The schemes with type II PDC are based on the fact that, as already mentioned,
in this case PDC-correlated photons are produced with orthogonal polarizations. In
the collinear regime the two degenerate photons are emitted in two tangent cones.
By selecting the intersection point of them, the two orthogonally polarized corre-
lated photons exit in the same direction and can be separated by a beam splitter,
generating an entangled state when one post-selects (i.e., only keeps into account)
events where photons have left the beam splitter on different paths (taking therefore
only a 50% of original pairs).

This scheme is rather simple and has allowed, for example, to measure a 10
standard deviation violation of Clauser–Horne inequality (17). Nevertheless, with
the purpose of building very bright sources it is convenient to work in the non-
collinear regime [76].

Indeed, in type II PDC, when the angle θ between pump and crystal optical axis
is decreased, the two cones separate from each other entirely. On the other hand, if
θ is increased, they intersect: therefore along two correlated intersections a, b one
superimposes the probability amplitudes of generating a H (V ) or V (H ) photon
in direction a (b). However, this bi-photon state is not yet entangled, since, due to
birefringence in the nonlinear crystal, ordinary and extraordinary photons propagate
with different velocities and different directions inside it. Therefore, longitudinal
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and transverse walk-offs (i.e., the optical beam displacement due to birefringence)
must be compensated for restoring indistinguishability between the two polariza-
tions and really generating an entangled state. This is usually achieved by inserting
some birefringent medium (as quartz) along the optical path of photons.

The first realization of the non-collinear type II PDC scheme appeared in [45, 77],
where a pump beam at 351 nm (150 mW) pumped a 3 mm long BBO crystal. The
transverse walk-off was estimated to be negligible compared to coherent pump
beam width. On the other hand, the longitudinal walk-off (385 fs) was larger than
the coherence time, determined by interference filters and irises, and was compen-
sated by an additional BBO crystal. All four Bell states were generated. A very
significant violation, 102 standard deviations, of CHSH inequality was achieved,
S = −2.6489± 0.0064, showing the efficiency of this source.

More recently some very bright sources have been obtained [74, 71, 34, 4] reach-
ing up to 77 s−1 coincidence counts for a milliwatt pump power [72] and a tradi-
tional crystal and even up to a measured coincidence flux of 300 s−1 for milliwatt
of the pump [71] by using a periodically poled KTP crystal (i.e., a crystal where the
susceptibility was periodically modulated giving a constructive interference in the
emission).

Concerning transmission of polarization entanglement in open air, by using a
type II source producing 20,000 entangled pairs per second (with a violet diode laser
at 405 nm and 18 mW power as a pump) it was possible to transmit entanglement for
more than 600 m with a clear violation of CHSH inequality, S = 2.41 ± 0.10 [4].
More recently this result was extended up to 13 km [99], with a CHSH violation
S = 2.45± 0.09 and then to 144 km [129, 130].

As already mentioned, in alternative to the use of type II PDC, one can superim-
pose the emissions (with orthogonal polarizations) of two type I PDC crystals whose
optical axes are rotated by 90◦ [57]: if the optical distance between the two crystals
is shorter than the coherence length of pump laser, one generates a (non-maximally)
entangled state:

|ψNME〉 = |H〉|H〉 + f |V 〉|V 〉√
1+ | f |2 . (27)

The explicit value of the parameter f can be tuned according to the specific
choices in the setup. Incidentally, for both the type II and the present scheme a
certain care must be addressed to the phase between the two components: moving
in angle or frequency, change it and eventually allows to switch between different
Bell states [19, 21].

A first realization of this scheme is based on superimposing the emission of two
thin adjacent type I crystals. A little more in detail, in [137], an argon laser beam at
351 nm pumped two adjacent BBO crystals 0.59 mm long with optical axes oriented
orthogonally. A rotatable half-wave plate on the pump beam before the crystals
allowed to tune the laser beam polarization and therefore the parameter f of the
generated state (27). A large violation of Bell inequalities (for maximally entangled
states), S = 2.7007 ± 0.0029, was observed. Furthermore, the source was rather
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bright, giving a 21,000 s−1 coincidence rate for 150 mW pump power (an order of
magnitude larger than previous type II sources).

Alternatively, the two emissions can be superimposed by using an optical con-
denser [17]. In principle, this scheme allows a very precise superposition of the
whole parametric fluorescence even with long crystals allowing higher intensities.
A little more in detail, in [17] (see Fig. 5) a 351 nm argon laser beam pumped two
crystals of LiIO3, 250 mm apart (a distance smaller than the coherence length of
the pumping laser). The PDC emission from the first crystal was focused into the
second one by an optical condenser (two plano-convex lenses). A hole, drilled into
the center of the lenses, allowed transmission of the pump radiation without absorp-
tion. A small quartz plate (5 × 5 × 5 mm) in front of the first lens of the condenser
compensated the displacement of the pumping beam at the exit of the first crys-
tal deriving from birefringence. Finally, a half-wavelength plate immediately after
the condenser rotated the polarization of the pump beam that excited in the sec-
ond crystal a spontaneous emission which was cross-polarized with respect to the
first one.

The achieved coincidence rate was analogous to the one of the previous scheme.
A test of Bell inequalities by using non-maximally entangled states (which, inci-
dentally, allow a reduction on the quantum efficiency limit for a detection loophole-
free test with respect to maximally entangled ones) led to a clear violation of (18),
R = 1.082± 0.006.

The setups discussed up to now were realized in the continuous wave (cw)
regime. Nevertheless, for timing reasons, the pulsed regime is preferable for
many quantum information protocols. Thus, recently, many studies were devoted
to produce sources in this regime. When the pump pulses are very short (typi-
cally hundreds of femtoseconds), amplitudes for photon pairs produced at different
depth inside the crystal become distinguishable, reducing two-photon interference
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Fig. 5 Sketch of a bright source of polarization-entangled photons realized by superimposing two
type I PDC emissions. The detection apparatus is also shown
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visibility [64]. This problem required to use either thin (≈100 µm) nonlinear crys-
tals [116] or narrow band spectral filters (for increasing coherence length) in front
of detectors [55, 54, 33]. However, these solutions significantly reduce the available
flux of entangled photon pairs.

With the purpose of overcoming these limits, bright sources in pulsed regime
were obtained in interferometric schemes (as by pumping with a femtosecond mode-
locked laser two type I BBO crystals inserted in a Mach–Zehnder interferometer
[67] or in a scheme with a polarising beam splitter [103]). Another bright source in
femtosecond pulsed regime was also obtained by addressing back the PDC emission
and the pump beam, both with the polarization rotated π/2 by two passages through
a λ/4 wave plate, to the same type I crystal by means of a spherical mirror [5, 31].
A 213 σ violation of Bell inequality was observed.

Before concluding this list of sources of bipartite photon-entangled states, we
mention that a scheme based on an interferometer in the continuous wave regime has
been realized as well [41]. The setup consisted in a Mach–Zehnder interferometer
where the laser beam, split by a first beam splitter, pumped two identical type II
crystals inserted each in a different arm (A,B) originating in the state

|HA(ωs)〉|VA(ωi )〉 + |HB(ωs)〉|VB(ωi )〉√
2

. (28)

After rotating the polarization with a half-wave plate on one of the arms, the two
emissions were recombined on a polarizing beam splitter producing the following
entangled state:

|H1(ωs)〉|V2(ωi )〉 + |V1(ωs)〉|H2(ωi )〉√
2

, (29)

where 1, 2 refer to the two PBS output ports. This source, whose practical imple-
mentation was based on a single crystal with counter-propagating pump beams, was
able to produce a flux of 12,000 s−1 entangled photon pairs, for milliwatt of pump
beam, and 100 σ violation of the CHSH inequality.

Finally, it is worth mentioning that an extension of these sources also allowed
to generate entangled states of more than two photons. Let us sketch the proposal
in [96, 14] to generate a GHZ polarization-entangled state (see chapter “Bipartite
Quantum Entanglement”, Example 4)

ΨGHZ = 1√
2

(
|H〉|H〉|H〉 + |V 〉|V 〉|V 〉

)
. (30)

The scheme consisted in transforming two pairs of polarization-entangled pho-
tons produced simultaneously in a type II crystal pumped by a high-intensity UV
200 fs pulse into three entangled photons by using post-selection [145]. In more
detail, in some rare event two entangled pairs (|H〉 |V 〉 − |V 〉 |H〉)/√2 were pro-
duced by the same pulse. The selection of the desired state was then obtained by
inspecting a posteriori the four-fold coincidence recording obtained by the apparatus
in Fig. 6.
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Fig. 6 Setup for generating a GHZ pair [96]

The photon registered at detector T is always horizontally (H ) polarized and
thus its partner in b must be vertically (V ) polarized. The photon reflected at the
polarizing beam splitter in arm a is always V, being turned into equal superposition
of V and H by a λ/2 wave plate, and its partner in arm b must be H . Therefore if all
four detectors click at the same time, the two photons at detectors D1 and D2 must
have been either V V or H H . Thus the photon at D3 was H or V , respectively. The
indistinguishability of both cases was obtained by using narrowband filters (4 nm)
to increase coherence time to about 500 fs. Extensions of this scheme were then
realized for entangling from 4 [147, 136], 5 [148] up to 6 photons [84].

3 Optical Realizations of Quantum Information Protocols

In line of principle, every two-level system can be used for implementing qubits
(see chapter “Quantum Probability and Quantum Information Theory”). A short
list (of systems that have already had experimental implementations) includes the
following:

• ions (where the CNOT gate was implemented [82, 112]);
• nuclear magnetic resonance (factorization of N = 15 by means of Shor’s algo-

rithm [132]) (see chapter “Quantum Algorithms”);
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• solid-state devices as quantum dots or superconductor devices (realized proofs of
principle of logical gates);

• cavity QED, where a controlled phase gate is obtained by coupling Rydberg
atoms with photons in a cavity [104] (see chapter “Physical Realizations of Quan-
tum Information”).

As previously discussed, among the various proposals photons represent one of the
most interesting system for implementing a qubit realization, since

• one has relatively efficient single-photon sources at disposal;
• efficient bright sources of (few) entangled photons do exist;
• photons can travel large distances keeping their coherence properties;
• single-photon gates are easily implemented by beam splitters, phase shifters, etc.

On the other hand, the weak (medium-mediated) interaction between photons
poses serious drawbacks to the implementation of two-photon quantum gates (that
also poses limits on distinguishability of Bell states as we will discuss in Sect. 5.6).
This strongly limits the possibilities of building a universal set of quantum opti-
cal gates and thus the chances of realizing an optical implementation of quantum
computation (see chapter “Quantum Algorithms”). Furthermore, various quantum
communication protocols, as dense coding and quantum teleportation (see chapter
“Quantum Probability and Quantum Information Theory”), rely on the so-called
Bell measurement, i.e., the discrimination between the four maximally entangled
states of two qubits (see chapter “Quantum Probability and Quantum Information
Theory”, Sect. 6.4 and chapter “Bipartite Quantum Entanglement”, Sect. 2). A
complete deterministic Bell state discrimination is possible only if the two photons
effectively interact; otherwise some of the Bell states cannot be discriminated. As
we will see, many quantum information protocols realized up to now are affected
by this problem.

4 Optical Quantum Computation Protocols

4.1 Kerr Controlled Phase Gate

Generally speaking, any quantum information processor performs a unitary trans-
formation, which can always be decomposed in terms of single- and two-qubit oper-
ations (see chapter “Quantum Algorithms”, Sect. 2).

This means that if one wants to implement quantum information protocols using
photons, controlled conditional two-photon quantum dynamics is a necessary tool.
A simple, yet fundamental, example of conditional quantum dynamics is provided
by the so-called quantum phase gate, which operates on a single-photon state, a
phase shift whose value is conditioned upon the state of the other photon. This gate
together with single qubit gates, that also are easily realizable with beam splitters
and phase shifters, represents a universal set of quantum logical gates.
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In the case of photonic qubits, an implementation of the quantum phase gate
would be in principle trivial, because it is a direct consequence of the cross-phase
modulation taking place in nonlinear Kerr media (i.e., on the reciprocal effect on the
phase of the two electromagnetic fields). Kerr effect is indeed a phenomenon where
the presence of an electromagnetic field modifies the refraction index of a medium
and, therefore, affects the propagation of a second electromagnetic field.

If the interaction is sufficiently strong the effect happens at single-photon level,
being described by the interaction hamiltonian

HKerr = g h̄ n1 n2 , (31)

where n1, n2 are the number operators for the two fields. Thus field 2 evolves
accordingly to (for simplicity we neglect free-field evolution)

da2(t)

dt
= i

h̄

[
H, a2

]
= ig

[
n1n2, a2

]
= −i gn1a2, a2(t) = e−ign1t a2(0). (32)

Namely, it acquires a phase that depends on the number of photons of field 1. Unfor-
tunately, the practical implementation of such a dynamics is problematic, because
one needs very large nonlinearities together with negligible photon absorption,
which are usually incompatible in standard Kerr devices. However, recent achieve-
ments in ultra-slow light propagation in a cold gas of atoms opened the way for the
realization of significant conditional phase shifts also between two traveling single-
photon pulses. In fact, an extremely slow group velocity (and even its “freezing”)
is obtained as a consequence of electromagnetically induced transparency (EIT),
a quantum optical phenomenon where due to interference introduced by driving
two levels of a three-level atomic system with a driving electromagnetic field the
medium becomes effectively transparent to a probe field corresponding to the tran-
sition between one of these levels and the third one. For example, a scheme for
realizing a controlled phase shift with rubidium atoms was proposed in [94]. Very
recently, a step in this direction has been realized by observing EIT at single-photon
level [38]. Nevertheless, the road toward the realization of a two-qubit gate by this
method looks still hard and long. Incidentally, we would also like to mention that
EIT has also been studied for realizing quantum memories [100, 36, 28, 38, 2].

4.2 Linear Optics Probabilistic CNOT

An alternative would be the realization of a two-qubit gate based on linear optics.
In general no deterministic universal two-qubit gate can be realized by linear optics;
however, a probabilistic one (i.e., working only with a non-unity probability) can be
made with linear optical elements only [70].

This possibility seems rather interesting and in the following we present as an
example the setup implemented in [101]. For further, recent progresses see [93, 42,
149, 46, 92] as well. In general fidelities above 80% have been reached.
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A linear optics CNOT can be achieved by combining the sub-elements that we
are now going to discuss. The first of them is the quantum parity check, whose
function is to transfer the value of the input qubit to the output one, provided that
its value is the same as that of the second input qubit. If the two inputs are different
(odd parity) the device produces no output. A photon is absorbed (measured) in any
event. This operation is realized by mixing two photons in a polarizing beam splitter
(PBS) oriented in H , V basis and accepting the output of mode 2 only when one and
only one photon on the other output of PBS is measured by a polarization-sensitive
detector (in the 45◦ basis).

In more detail, let us input an unknown state

*in = α|H〉 + β|V 〉 (33)

on one side and a single-photon state

|H〉 + |V 〉√
2

(34)

on the other side, after PBS we obtain (2 and c denote the two PBS outputs the
following):

|45〉c
(
α |H〉 + β |V 〉

)

2
+ | − 45〉c

(
− α |H〉 + β |V 〉

)

2

2
(35)

+
(
α |H〉2 |V 〉2 + β |H〉c |V 〉c

)

√
2

, (36)

where the second term leads to unsuccessful cases when the detector receives zero
or two photons.

On the other hand, by accepting the output when one and only one photon is
received by the detector D45

c and no photon by D−45
c we obtain the correct output,

with probability 0.25. This probability of success can be increased to 0.5 by accept-
ing also the case with one and only one photon observed by D−45

c and no photon by
D45

c , but actively imparting an additional phase shift to the output. Also, it is worth
noticing that no knowledge on the output polarization is acquired.

Then, a quantum encoder can be implemented by inputting to one port of the
parity check a two-photon entangled state of the form

|Φ+〉 = |H〉 |H〉 + |V 〉 |V 〉√
(2)

. (37)

In this case, a successful detection post-selects, with 0.5 probability, the state

α |H〉2 |H〉b + β |V 〉2 |V 〉b . (38)
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A second gate to be constructed for building a (non-destructive) CNOT is the so-
called destructive CNOT, whose goal is to flip the polarization state of target photon
if and only if the control one is vertically polarized. This device is realized by mixing
a target input photon*in with a second input photon on a PBS oriented in 45◦ basis.
If the control photon is vertical one has (d and 3 denote the two outputs)

α
(
|45〉d |45〉3 − | − 45〉d | − 45〉3

)
+ β

(
|45〉d |45〉3 + | − 45〉d | − 45〉3

)

2

+
α

(
|45〉3 | − 45〉3 − |45〉d | − 45〉d

)
+ β

(
|45〉3 | − 45〉3 + |45〉d | − 45〉d

)

2
,

(39)

where the second term originates unsuccessful cases. Rewriting the amplitudes (in
the first term) in H basis, one has

|H〉d
(
α |V 〉3 + β |H〉3

)
+ |V 〉d

(
α|H〉3 + β |V 〉3

)

2
. (40)

control

target

d

3

2

c

Bell state

HV PBS

45,–45  PBS

D1

D2

Fig. 7 Probabilistic CNOT. Detectors D1 and D2 are polarization sensitive (i.e., a PBS plus two
photo-detectors)
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Further, by accepting only the outcomes in which detector DH
d receives one and only

one photon and DV
d no photons, we have the correct output α|V 〉3 + β|H〉3 with

probability 0.25. Again, success probability can be increased to 0.5 by accepting
also outputs where DV

d receives one and only one photon and DH
d no photons and

performing a unitary operation on the output. Finally, one can consider the case
where the control-qubit was horizontally polarized for checking that in this case the
output is equal to target input.

The previous logical operations can then be combined for realizing the CNOT
gate. The quantum encoder (see Fig. 7) copies the value of control-qubit in one
output (2 in the figure) and in the input of the destructive CNOT. Thus the output
from CNOT (3 in the figure) contains the desired result of the logical operation,
while the value of control qubit is preserved in the other output mode. A simple
calculation shows that this device works effectively as a CNOT with 0.25 success
probability.

Recently, integrated quantum optics circuits including two-qubit gate have also
been realized [120]. In conclusion of this paragraph we would also like to men-
tion recent developments toward an experimental realization of linear optics cluster
computation [44, 131].

5 Quantum Communication

As we have discussed in the former section qubit realization based on photons can
offer a scheme for realizing quantum computation protocols, a possibility that is
now investigated among many other proposals. On the other hand, when considering
the transmission of quantum information, photons are the obvious carriers. In fact,
photons can travel long distances both in air and in fiber and they do it at the speed
of light.

As already described in chapter “Quantum Probability and Quantum Informa-
tion Theory”, quantum communication allows either protocols that have no classical
equivalent as teleportation and dense coding or protocols allowing absolutely secure
transmission of information in chapter “Quantum Cryptography”. In the following
we will describe some experimental realization of these quantum communication
protocols. However, as in chapter “Quantum Probability and Quantum Information
Theory”, Sect. 6.1, we begin by discussing quantum impossibilities, that is, what
quantum communication is not able to do, in particular faster-than-light transmis-
sion and cloning of unknown quantum states.

5.1 No Faster-than-Light Transmission by Using EPR Correlations

The non-locality of quantum entangled states does not allow any transmission of
information faster than light and thus does not conflict with special relativity, albeit
many opposite claims due to many different, also rather influent, authors.
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Before discussing the general theorem, we consider some specific examples that
provide a clear insight into why quantum non-locality does not allow super-luminal
communication and give somehow a first indication as to what can or cannot be
done in quantum communication.

Let an entangled pair be shared between two observers, Alice and Bob. Alice
performs on her particle a spin test along the z direction: what she obtains is
a perfectly casual sequence of 1 and −1, each outcome with probability 1/2. If
also Bob performs the same test (in principle they could be space-like separated,
whence, in a certain reference frame, Alice’s measurement comes before Bob’s,
while in another reference frame the opposite occurs), quantum mechanics pre-
dicts that Bob’s results are perfectly correlated with Alice’s ones: every time Alice
observes a 1 Bob obtains −1 and vice versa. Anyway, if there is no classical com-
munication between them, the only knowledge on Bob’s side is that contained in
a random sequence of 1 and −1. Therefore, he cannot in any way know if Alice
has performed a measurement or not, his results forming in both cases a random
sequence. Thus, Alice and Bob cannot communicate any piece of information in
this way.

However, the situation could change if Bob would be able to “clone” each particle
he receives. For example, let us suppose that he posseses an apparatus creating 4N
photons that are exact copies of an arbitrary input photon. If Alice chooses between
performing a test along the z axis or along a basis at 45◦ with respect to the z axis
and she obtains either 1 or −1 as outcomes, then Bob can use his cloning apparatus
for detecting which result she has obtained. In fact, he can clone his particle and
send N copies to four different apparatuses measuring the spin along z, −z, or the
two conjugated directions of the second basis, respectively. When Alice has got
outcome 1 (−1) in the z basis, Bob gets, in the same basis, N (0) particles giving
outcome −1 and 0 (N ) with outcome 1. Instead, in the other basis, he would end
up with N/2 particles giving outcomes 1 and −1. Exactly the same result would be
obtained, mutatis mutandis, had Alice chosen to perform the test in the other basis.
Namely, in this case, if Alice obtains outcomes 1 (−1), Bob would observe, using
the second basis, N (0) photons giving outcome −1 and 0 (N ) with outcome 1,
whereas in the z basis he would observe N/2 particles providing both the outcomes
1 and −1. Therefore, by simply inspecting which detector detects zero events, Bob
would be able to know Alice’s outcome. Of course, such a knowledge could be used
to suitably engineer signal transmission. Nevertheless, quantum mechanics laws do
not allow such a scheme, since it has been demonstrated that cloning an arbitrary
unknown quantum state is impossible [138].

The demonstration of this theorem is rather simple. Let us suppose that we dis-
pose of a cloning machine, that from an unknown quantum state |Ψ1〉 and a second
“target” state |Ψ0〉 produces a copy of the first. The action of the cloning machine
can be described by a unitary operator U through

|Ψ1〉 ⊗ |Ψ0〉 �→ U
(
|Ψ1〉 ⊗ |Ψ0〉

)
= |Ψ1〉 ⊗ |Ψ1〉 . (41)
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If we assume to apply the same cloning machine to an arbitrary second state |Ψ2〉,
the result would be

|Ψ2〉 ⊗ |Ψ0〉 �→ U
(
|Ψ2〉 ⊗ |Ψ0〉

)
= |Ψ2〉 ⊗ |Ψ2〉 . (42)

Furthermore, taking the inner product of the equalities in the two former equations
we obtain the following:

〈Ψ1|Ψ2〉 = (〈Ψ1|Ψ2〉)2 ; (43)

however, this relation requires that either |Ψ1〉 = |Ψ2〉 or |Ψ1〉 is orthogonal to
|Ψ2〉: the cloning machine can clone only orthogonal states and therefore a univer-
sal cloning machine is impossible. Incidentally, this theorem is also at the basis of
the security of QKD (see chapter “Quantum Probability and Quantum Information
Theory”, Sect. 6.1 and chapter “Quantum Cryptography”, Sect. 3.1).

The former argument gives a clear hint of why quantum non-locality cannot be
used for transmitting faster-than-light communications. In effect, a general theorem,
demonstrated at the beginning of the 1980s [50], shows the absolute impossibility
of using quantum non-locality for faster-than-light transmission. Here is a sketch of
the proof.

Suppose to perform a projective measurement (see chapter “Quantum Probability
and Quantum Information Theory”, Sect. 6.4) on the subsystem S1 of a composed
system S1 + S2 described by a statistical operator ρ12. This corresponds to project-
ing onto a specific eigenstate |s〉, an operation described by a projection operator
P1

s = |s〉〈s|. When Alice performs a non-selective measurement on S1 (i.e., where
one keeps all the outcomes), the statistic operator ρ12 transforms according to the
following:

ρ12 → ρ′12 =
∑

s

P1
s ρ12 P1

s . (44)

All the information on the subsystem S2 is contained in the reduced statistical
operator ρ2, obtained by taking the partial trace on the Hilbert space H1 (corre-
sponding to S1):

ρ2 = Tr 1(ρ
′
12) = Tr 1

( ∑

k

P1
k ρ12 P1

k

)
=

∑

k

Tr 1

(
P1

k ρ12 P1
k

)
, (45)

where we have used the fact that trace is a linear operation. By using the prop-
erties of the trace (see chapter “Hilbert Space Methods for Quantum Mechanics”,
Sect. 1.5), it follows that

ρ2 =
∑

k

Tr 1

(
P1

k ρ12 P1
k

)
=

∑

k

Tr 1

(
P1

k ρ12

)
= Tr 1

( ∑

k

P1
k ρ12

)
= Tr 1ρ12 .

(46)
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This is exactly the same reduced density operator that one would have obtained
without any measurement on the subsystem S1: it is not possible to distinguish
whether a measurement on system 1 has been made or not, by performing mea-
surements on the system 2 only.

More recently, this theorem has been extended to more general kinds of mea-
surement [49] and to the case of approximate cloning [24] as well, showing with
absolute generality the impossibility of faster-than-light communication by exploit-
ing quantum mechanical non-locality.

5.2 Dense Coding

Let us now describe what quantum mechanics allows to do beyond classical
mechanics, namely let us consider some quantum communication protocols without
classical equivalent. We begin with the simplest one: the dense coding.

As already seen in chapter “Quantum Probability and Quantum Information
Theory”, Sect. 7.2, dense coding is a quantum communication protocol addressed
to transmit 2 bits of information by manipulating just one single qubit. The idea is
to use the entanglement of a Bell state, for example, of

|Ψ+〉 = |0〉 |1〉 + |1〉 |0〉√
2

. (47)

One of the particles is kept by Alice, the other is sent to Bob who performs one of
the following actions:

1. an identity operation;
2. a state flip: |0〉 → |1〉, |1〉 → |0〉;
3. a state-dependent phase shift (i.e., a phase shift differing by π for the two qubits);
4. the previous two operations together.

This results in generating the whole set of Bell states (see chapter “Bipartite
Quantum Entanglement”, step 1 of Exercise 3)

|Φ+,−〉 = |0〉|0〉 ± |1〉|1〉√
2

, |Ψ+,−〉 = |0〉|1〉 ± |1〉|0〉√
2

. (48)

Thus if Bob sends back its particle to Alice, she can obtain two bits by measuring
the Bell state of the pair.

The first experiment demonstrating this scheme was realized in [89] by using
polarization entangled photons produced by type II PDC. The operations 1–4 were
easily realized by using wave plates (one λ/2 and one λ/4). As discussed before,
the difficult part is the detection of Bell states since no linear optical system allows
a perfect identification of all the four states. The scheme used by [89] was based on
combining the two photons on a BS followed by a PBS (in H , V basis) on every
output port with a detector on every branch (in the following denoted by DH and DV
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for the first PBS and D′
H and D′

V for the second, where H , V denote the polarization
of the photons impinging on a given detector).

Since only Ψ− has an antisymmetric spatial wave function, only this state is
registered by coincidence detection of different outputs of the beam splitter (i.e.,
coincidences between DH and D′

V or between D′
H and DV ). In the other cases the

photons exit from the same output of the BS. *+ is then easily recognized since it
gives rise to different polarizations of the photons and thus they reach two different
detectors as well (DH and DV or their equivalent on the other branch). A high relia-
bility (larger than 90%) for identification of these two states was reached when both
photons were observed. On the other hand, the Φ states cannot be distinguished.

This represents an emblematic example of Bell state measurement with linear
optics: in the simplest scheme one can recognize only 2 states over 4. Thus, the
experiment gives a proof of principle of the scheme, but cannot represent a complete
realization of it.

A complete Bell-state discrimination could only be obtained either with linear
optics assisted by hyper-entanglement (i.e., entanglement in more degrees of free-
dom as polarization and momentum) [134] or with non-unity probability, by exploit-
ing a non-deterministic scheme as the one described in the previous section.

5.3 Teleportation

As described in chapter “Quantum Probability and Quantum Information The-
ory”, Sect. 7.1, teleportation is a protocol where an unknown quantum state Ψ is
measured in a laboratory (Alice) together with a member of a bipartite entangled
state; then, by applying a unitary operation on the other member of the entan-
gled state according to the result of this measurement (communicated by a clas-
sical channel), Ψ is reconstructed in a remote laboratory (Bob). This protocol has
been successfully reproduced with photons and (more recently) with atoms. In this
paragraph we describe one of the first two realizations [14] and briefly mention the
other [11].

The setup proposed in [13] is a modification of the one described in the previ-
ous paragraph: two polarization-entangled pairs of photons (*−) are produced by a
pump crossing go and back (i.e., coming back to the crystal after a reflection) a type
II crystal. One of the photons of the first pair is detected realizing a heralded single
photon source, whose polarization is fixed with a suited choice of retardation wave
plates. This is the state to be teleported. A Bell state measurement of this heralded
photon (photon 1) and one member of the second pair (photon 2) is then performed
with the method described in the former paragraph. Of course this requires a precise
setting of the arrival time of the two photons at the measurement apparatus, which
is obtained by acting on the mirrors addressing the two photons to the BS where
they are combined. Finally, the second member of the entangled pair (photon 3) was
submitted to a polarization measurement (by means of a PBS and two avalanche
photo-detectors (APD)).
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Because of the limitations discussed in the previous paragraph and for simplicity
of realization of the setup, the measurement was restricted to *− projection only.
Furthermore, Bob did not perform any unitary operation, but only correlation among
photons 1 and 3 was measured. The results of this measurement clearly showed the
correlation between photons 1 and 3, certifying that if the unitary operation would
have been performed then photon 1 would have been teleported successfully. In 45◦
basis one observed a strong dip, (63 ± 2)% visibility, for opposite polarizations of
photons 1 and 3 when the right delay between them was set.

It is also worth to mention that to rule out any classical explanation for these
results [13], a four-fold coincidence measurement for the case of teleportation of
the +90◦ polarization states, i.e., for a non-orthogonal state to the +45◦, has been
performed obtaining a (70 ± 3)% visibility without background subtraction. These
results correspond to a fidelity above 80% for the teleported state. Also, at the same
time of [13], another teleportation experiment was performed by exploiting only two
photons [11]: the EPR pair is realized by path entanglement and the polarization
state of one of the photons of the EPR pair is used as the state to be teleported.
Drawbacks similar to those of the former experiment were also present.

More recent experiments involved a complete Bell-state measurement [68, 111]
or the realization of the final unitary transformation [51]. More precisely, complete
teleportation has been obtained in a scheme analog to the first one described in
this paragraph either by using a probabilistic CNOT gate [111] or by using sum
frequency generation (SFG).

In the first case, one applies to the Bell states the operator U = (H ⊗
1)UCNOT,

where H denotes the Hadamard gate and UCNOT the unitary operator implementing
the CNOT gate; whence the easily measurable states

UΦ+ = |H H〉 , UΦ− = |V H〉 , UΨ+ = |H V 〉 , UΨ− = |V V 〉 (49)

follow. In the second case, either two H (V ) photons are converted into a single H
(V ) photon, type I SFG, or a H–V photon pair is converted into a single photon by
type II SFG. The four Bell states are then distinguished by polarization measure-
ments on the up-converted photons.

Finally, in [51] the final unitary transformation at Bob’s side was obtained by
using an electro-optic Pockels cell driven by Alice’s classical transmission after
having retarded Bob’s photon in fiber.

In conclusion of this section, it should also be mentioned that, recently, a quan-
tum state encoded in light was teleported to an atomic ensemble containing 1012

caesium atoms [117].

5.4 Quantum Swapping

Another interesting quantum communication protocol is quantum swapping, where
entanglement between two photons, both part of a different entangled pair, is estab-
lished by performing a joint Bell measurement on the other two photons of the
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two pairs. The experimental scheme for swapping has been again obtained by a
modification of the setup described in the two previous paragraphs [63].

The simple modification is that now the first photon of the first EPR pair (0) is
not used as trigger for heralding the other, but it is measured together with photon
3 showing how they became entangled by a Bell measurement on photons 1–2. In
[63] the entanglement between photons 0 and 3 was then checked by measuring the
CHSH inequality (19). The measured value S = 2.421 ± 0.091, largely violating
the classical limit, shows the success of the protocol.

5.5 Quantum Cryptography

Among the recent applications of quantum mechanics to technology the possibility
of transmitting absolutely confidential messages has received much attention, due to
the possibility of creating a key for encoding and decoding secret messages by trans-
mitting single quanta between two parties (see chapter “Quantum Cryptography”).
The underlying principle of quantum key distribution (QKD) is that nature prohibits
to gain information on the state of a quantum system without disturbing it. Since the
original proposal of quantum cryptography [138], many different protocols for such
a transmission have been proposed [53].

In the BB84 scheme [9] single photons are transmitted from Alice to Bob, prepar-
ing them at random in four partly orthogonal polarization states (at 0◦ and 90◦,−45◦
and 45◦, for example). Bob selects the basis for measuring the photon’s polarization
at random as well. Then Alice and Bob communicate on a classical channel the basis
they have used (but not the results of course): when they have used the same basis
Bob knows what polarization was selected by Alice and can build a key, for example,
by attributing a 0 when the photon is found with vertical polarization and 1 when
horizontally polarized. If a spy (Eve) tries to intercept the message, she inevitably
introduces errors, which Alice and Bob can detect by comparing a sub-sample of
the generated key.

In the Ekert protocol [39] entangled pairs are used. Both Alice and Bob receive
one particle of the entangled pair. Then they perform a measurement choosing
among at least three different directions. Again, Alice and Bob communicate on
a classical channel the basis they have used: if measurements were performed along
parallel axes, they are used for generating the secret key. The other measurements
can be used for a test of Bell inequalities. If Eve tries to eavesdrop the message, she
inevitably affects the entanglement between the two particles leading to a reduction
of the violation of the Bell inequalities, which allows Alice and Bob to recognize
the presence of the spy.

Quantum key distribution is now at the stage of prototypes demonstrating the
feasibility of long distance communications to the point that QKD is now ready
for commercial applications, whose success will depend on the real commercial
request of absolutely secure communications. Various possible protocols are avail-
able, based both on entangled and on non-entangled states. Furthermore, one can
use either single photon states or multi-photon (as coherent) ones. The maximum
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distance that can be reached with a certain source and a certain protocol is the one
where the quantum bit error (Qber) introduced by the channel reaches the limit for
having a secure distilled rate above zero between Alice and Bob. In protocols that
do not require entanglement, as BB84, in practice one can use either PDC-heralded
photons or an attenuated laser beam (that well approximates a weak coherent state
(see chapter “Field-Theoretical Methods”, Sect. 2.3). The difference between the
two sources is in the two or more photons component, which is larger for coherent
states. Since having a higher photon number component means that Eve can eventu-
ally eavesdrop these photons in excess without affecting the transmission between
Alice and Bob, this reflects in a longest distance for a secure communication for the
heralded photon sources. For example [53], if one compares what is expected for
BB84 QKD in fiber at 1,550 nm the limit decreases from about 120 km for a single-
photon source to about 80 km for a coherent state with on average 0.1 photons.

Nevertheless, more recently, protocols in continuous variables were proposed
and some of them implemented that can in principle allow long-distance QKD
with intense coherent or squeezed states (see chapter “Field-Theoretical Methods”,
Sect. 2.4). For example, in [56] a scheme was presented based on modulating in
phase and amplitude coherent states at Alice’s side and subsequently performing a
homodyne detection at Bob’s side. More precisely, Alice sends a coherent state (of
a few hundreds of photons) modulated in phase and amplitude |x + i p〉, and Bob
randomly chooses to measure either quadrature x = a + a† or p = i (a† − a).
The set of correlated variables, to be used for building the key, is established by
informing Alice on a public channel of which quadrature was measured for each
run. An eventual eavesdropping would introduce some noise that allows Alice and
Bob to identify it. Experimental implementation yielded a net key transmission of
about 1.7 Mbits for a loss-free line.

A different situation is met when one wants to use protocols based on entangled
states. In this case one must refer to either phase or polarization-entangled photon
sources described previously. Here we want also to mention that recently it has
been shown how quantum communication based on codification in d-dimensional
(d > 2) Hilbert spaces (qudits) presents a higher security than the traditional qubit
schemes [7, 6, 12, 27, 25, 48]. Realization of qudits has been obtained, for exam-
ple, by using multi-arm interferometers (an extension of time-bin scheme) [125],
codification in bi-photon pairs (HH , H V , VV qutrits, or ququats if using two dif-
ferent wavelengths such that H V and VH are distinguishable) [88, 26, 29], in orbital
angular momentum states (generated by holograms) [133], etc. Nevertheless, at the
moment experimental transmissions of qudits are not yet competitive with tradi-
tional qubit ones. For what concerns experimental QKD based on single photon
qubit transmission, that at the moment is the one allowing the longest communi-
cations, the use of encryption in polarization is particularly well suited for com-
munication in open space, since air does not substantially present birefringence. For
example, by using weak coherent states transmissions up to 23.4 km were reached in
open air in daylight [73] with a 2 kbit per second rate. Very recently, [129, 130], vio-
lation of CHSH inequality was even observed up to a 144 km transmission between
La Palma and Tenerife, where the receiver was a 1 m Ritchey–Chrétien telescope



Photonic Realization of Quantum Information Protocols 245

(the link optical efficiency was on at best −25 dB). Furthermore, a BB84 QKD
(28 bit/s) was established by transmitting attenuated coherent states [113]; the use
of a decoy state protocol was fundamental for reaching the security level, which
derives by the request that the (random) error rate introduced by the background is
smaller than the threshold for the used protocol.

In this kind of experiments the background due to diffuse sunlight is strongly
attenuated by using both spectral selection (by interference filter) and temporal
selection (by opening a detection window when the transmission is expected). An
important point to be emphasized is that reaching such a distance in open air means
that a transmission toward a satellite is now technically possible, since losses would
be limited to the lower part of atmosphere [1]. Researches in this sense are now
carried on. On the other hand, the control of birefringence in fiber is by far more
difficult [53].

However, a QKD with polarization-entangled states produced by PDC (type II
crystal source) was realized between a bank and the Vienna city hall by using a
1.45 km optical fiber [103], and a QKD network, including also a part exploiting
transmission of polarized photons in fiber, has been built among several research
institutes in Boston [40]. Furthermore, recent studies [19, 17] show interesting
effects at level of restoration of entanglement in fiber when the temporal spread of
correlation function is considered, results that could find application to polarization-
based QKD in fiber.

Nevertheless, even if these achievements show that polarization encryption can
be used for QKD in fiber as well, phase encryption looks more promising for a long
distance communication in this case, due to smaller and more controllable fiber
effects on the transmission. Among the most interesting results with these schemes
we can quote the one of [87], where time-bin entanglement was distributed in fiber
over 50 km. The use of an active phase stabilization with a frequency-stabilized
laser and feedback loop allowed a long-term stability. A 15 standard violation of
CHSH inequality and a Qber of 11.5% demonstrate the validity of the scheme for
QKD purposes. Recently QKD even over 100 km in fiber was obtained by using
interferometric schemes [89, 68], with a recent record distance of 184.6 km [107]
by using cryogenic detectors (TES) with high quantum efficiency (65%).

Finally, we would like to hint at recent results concerning simple and rapid QKD
protocols. Here the quest is for schemes as simple as possible in order to be eas-
ily implementable in a commercial version, even if relaxing security requests with
respect to an eavesdropping realistically implementable with available technologies.
For example, in [144] a very simple scheme is proposed which is able to transmit at
more than 10 kHz transmission rate (raw detection rate) at a long distance in fiber
(various tens of kilometers). The security analysis was limited to intercept-resend
attacks. In this scheme Alice’s source consists of an intensity-modulated cw laser,
which prepares either a pulse with mean number α or a vacuum state. The logical
bits are

|0〉 = |α〉|0〉 , |1〉 = |0〉|α〉 , (50)
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where the order of the states denotes two subsequent pulses. Coherence (i.e., the
presence of an eventual eavesdropper) is checked by the transmission of decoy
pulses |α〉|α〉, whose coherence is checked by Bob through a Michelson interferom-
eter, whose states are randomly addressed by a beam splitter (due to laser coherence
there is a well-defined phase between any two non-empty pulses).

At the end of the exchange Bob tells which bits he has detected in the data line
and which were observed by a detector of the interferometer that cannot fire when a
decoy state was transmitted (due to interference). Then Alice tells Bob which bits he
must remove from his raw key, since they correspond to decoy states and estimates
the break of coherence (and thus the eventual presence of an eavesdropper) by using
the data from the interferometer.

5.6 Other Quantum Protocols with Photons

Before concluding, we mention that various other interesting protocols have been
realized by using the sources of entangled photons that we have described in
Sect. 1.2. To review all of them is largely beyond the purposes of these lectures.
In the following, we simply hint at a few of them.

A first example is entanglement distillation (see chapter “Bipartite Quantum
Entanglement”, Sect. 3.1); this may be obtained by acting through glass slabs with
polarization-dependent reflectivity on polarization-entangled states produced by the
two type I crystal scheme [79] and entanglement purification (i.e., extraction of max-
imally entangled pure states from a mixture) [97] (see chapter “Bipartite Quantum
Entanglement”, Sect. 3.1).

A second interesting achievement is approximate quantum cloning. As previ-
ously discussed, cloning an arbitrary unknown state is not possible in quantum
mechanics. Nevertheless, an approximate quantum cloning can be realized with a
fidelity up to 83%. PDC can be used as “amplifier” for cloning a seed state. In
extreme synthesis, the scheme is based on applying the type II PDC Hamiltonian
k(a†

H b†
V − b†

H a†
V ) (a†, b† corresponding to two different spatial modes) to a seed

(the state to be cloned), e.g. (because of rotational invariance of the Hamiltonian
which is sufficient to consider one particular initial polarization)

−i k t
(

a†
H b†

V−b†
H a†

V

)
|1V , 0〉 = −i k t

(√
2|2, 0〉a |0, 1〉b − |1, 1〉a |1, 0〉b

)
. (51)

The two photons in mode a are the clones. Inspection of the output state (51) shows
that with probability 2/3 both photons are vertically polarized, i.e., they are perfect
clones, while they have opposite polarization with probabilities 1/3; in such a case
the probability of picking a vertical photon is 1/2. Thus overall fidelity is F =
2/3 · 1 + 1/3 · 1/2 = 5/6, i.e., the optimal one. Experimentally, fidelities (see
chapter “Hilbert Space Methods for Quantum Mechanics”, Sect. 3.3) up to 81%
have been obtained [81, 110].
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As a further example we would like to hint at a first realization of decoherence-
free subspaces. In [143, 95] it was shown how some particular state can be unaf-
fected by the Hamiltonian describing decoherence, leading to a passive stabilization
of quantum information. In [80] an example of this stabilization was shown by con-
sidering propagation of polarization-entangled photons in the state Ψ− in a birefrin-
gent medium (the Bell states were produced by using the two adjacent type I PDC
crystals’ scheme). The effect of the medium was to transform |H〉 in eiθ0 |H〉 and
|V 〉 in eiθ1 |V 〉, thus

|Ψ−〉 = |H〉 |V 〉 − |V 〉 |H〉√
2

(52)

only acquired an irrelevant global phase eiθ0+θ1 . SinceΨ− is invariant for basis trans-
formation, this property remains valid in any basis (on the other hand, this is not the
case of Ψ+). The decoherence-free propagation of Ψ− was then tested by checking
the fidelity for the final state, which was measured to be F = 0.97±0.04 to be com-
pared with F = 0.51±0.03, F = 0.35±0.02, and F = 0.54±0.02 for Φ+, Φ−, and
Ψ+, respectively. Finally, we would like to mention that correlations in PDC find
applications also in disciplines related to quantum information as quantum imaging
[85] and quantum metrology [52, 20]. Quantum imagining is devoted to overcome
classical imaging limits by exploiting the properties of quantum states in analogy
to the attempt of quantum information to overcome limits of classical one. Among
the applications of quantum imaging actually under investigation we can mention
the detection of weak amplitude objects beyond the standard quantum limit, entan-
gled two-photon microscopy, image amplification by PDC, measurements of small
displacements, quantum optical lithography, and teleportation of optical images. On
the other hand, quantum metrology is addressed to exploit properties of quantum
systems for improving calibration of devices and realization of standards of unities.
Altogether one can envisage that the future of our society will be strongly influenced
by the development of quantum technologies.

Exercise 1

1. Plot the curve of PDC emission in function of angle and wavelength from a
BBO crystal pumped by a 351 nm laser beam with an angle 31◦ with the crystal
optical axis (type I).
Hint: find the wavelength dependence, Sellmeier equations, of the refraction
index, e.g., on the Internet, and use it in the momentum conservation equation
for deriving the emission angle of a given wavelength. Consider refraction at
the exit surface of the crystal.

2. Repeat Exercise 1 for the PDC emission from a BBO crystal pumped by a
351 nm laser beam with an angle 49◦ with the crystal optical axis (type II).

3. Calculate the rate of downconversion (〈Ψ |E−E+|Ψ 〉, where E is the electro-
magnetic field operator).
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4. Evaluate which is the output of a beam splitter (BS) where two identical single
photons enter simultaneously two different ports.
Result: the photons always exit the same port

5. Evaluate the output of a Michelson interferometer by using the quantum
description of a BS.
Hint: a2 and a3 are reflected back to the BS with a certain phase, Θ2 and Θ3,
respectively. The final outputs are therefore described by a5 = ta2eiΘ2+ra3eiΘ3

and a6. Express a5 and a6 in functions of a0 and a1 and evaluate 〈n5〉 and 〈n6〉
for various inputs. As a check, show that 〈n5〉 + 〈n6〉 = 〈n1〉 when port 0 is
entered by vacuum.

6. Evaluate the output of a Mach–Zehnder interferometer by using the quantum
description of a beam splitter.
Hint: proceed as in the former exercise by writing output operators in terms of
input ones.

7. Describe the quantum PBS.
8. Homodyne detection:

(a) show that by combining on a BS the optical state to be measured with a
local oscillator (an intense coherent state with fixed phase) one can measure
the quadrature variables x, p.
Hint: evaluate the average photon number of the two outputs of the BS when the
intensity of the LO field is much higher than the one of the state to be measured.
Show that by changing the phase of the LO the difference between these two
values gives the average value of both the quadrature observables.
(b) by considering the heralded single-photon sources described in the text
suggest a scheme for having the local oscillator locked in phase to the single
photons.

9. Suppose Alice transmits 105 photons per second, that the transmission of the
channel is T , that quantum efficiency of Bob detector is η = 0.5, and that the
background counts per second are B = 100. If the error threshold for the used
protocol is E = 12%, what is the minimal transmission T for having a secure
QKD?

10. Evaluate the probabilities given in the paragraph following Eq. (51)
11. Show that the state Ψ− is invariant for basis transformations and discuss

why this property allows to define it as a decoherence-free state for certain
Hamiltonians.
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Physical Realizations of Quantum Information

F. de Melo and A. Buchleitner

1 Introduction

When we want to consider physical realizations of quantum information models
and protocols, we have to identify specific (experimental) settings, which allow
to implement the fundamental building blocks of quantum information processing.
Thus, first we have to identify these building blocks and the requirements they imply
for an experimental realization.

The key ingredient in all quantum information processing is the coherent super-
position and evolution of quantum eigenstates |ψ j 〉 of some system Hamiltonian H .
For reasons of simplicity and because of the analogy with classical binary coding,
one, in general, thinks of

• superpositions of the eigenstates |0〉 and |1〉 of two-level systems and
• superpositions of many-particle states

| j1〉 ⊗ · · · ⊗ | jk〉 ⊗ · · · ⊗ | jN 〉 = | j1, . . . , jk, . . . , jN 〉 , with jk ∈ {0, 1} , (1)

of N -particle systems, composed of single particles with two discrete levels |0〉
and |1〉.
The levels |0〉 and |1〉, in our present context also known as the “computational

basis states,” are the discrete eigenstates of some single-particle1 Hamiltonian H
and can be energy eigenstates of, e.g., an atom, as shown in Fig. 1, or position
eigenstates in a double-well potential, as in Fig. 2, or anything such as photon
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more than one particle, forming a “logical qubit” [53].
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Fig. 1 The two (“computational”) energy eigenstates of an atom – in short a “two-level atom.”
In the laboratory, experimentalists make sure to isolate these two states from the, in general,
many-energy eigenstates of an atom, ion, or molecule, by suitable realization of the interaction
Hamiltonian which generates the desired unitary time evolution

Fig. 2 An alternative realization of a “qubit” or two-level system, favored by solid state physicists –
a double-well potential [29]. The two levels are defined by the left and right eigenstates |L〉 and |R〉,
which are obtained as linear superpositions of the energy eigenstates of the double-well potential

polarization states dealt with in chapter “Photonic Realization of Quantum Infor-
mation Protocols”.

In quantum optics and atomic physics, we tend to think of energy eigenstates,
while solid states prefer the double-well picture (which incarnates what is known
as the spin-Boson Hamiltonian [29]). Note that, a priori, there is no obvious reason
(except familiarity and simplicity, in some sense) why one should not use discrete
multi-state systems (i.e., one-particle systems with a Hilbert space dimension larger
than 2) or even systems with continuous spectra.

A “quantum information processor” will consist of a set of two-level systems –
qubits – which

• can be prepared in an arbitrary (collective) initial state

|ψ0〉 =
1∑

j1,..., jN=0

c j1,..., jN | j1, . . . , jN 〉 ; (2)

• can be coupled to each other (e.g., through nearest-neighbor coupling between
adjacent sites);

• undergo a coherent/unitary time evolution (what, practically, will be tantamount
to the execution of some algorithm); and

• can be read out in their final state.

In other words, the fundamental requirements for successful quantum information
processing are
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• quantum state preparation,
• coherent control,
• quantum state readout/tomography,

and all this for composite, multipartite quantum systems (in quantum information
jargon: “quantum registers”) [16].

Since quantum information processing develops its full potential – as compared
to classical information processing – only in the limit of large quantum registers
(N 4 1), these requirements have to be met in this very limit, i.e., any experimental
technique which succeeds on the single-particle level has to fulfill the condition of
scalability (i.e., 1 → N ), in order to have any relevance under the perspective of
quantum information processing.

This means that we are targeting at coherent control of many-particle quantum dynamics,
on a mesoscopic or rather macroscopic scale!2

Note that this implies – notwithstanding the focus on two-level constituents of a
quantum register – high-dimensional Hilbert spaces (of dimension 2N ), high spec-
tral densities, and, a priori, a high sensitivity with respect to perturbations.

Given the requirements of initialization, control, readout, and scalability, one
needs to choose a suitable physical entity to represent a single qubit and registers
thereof. One has to guarantee single- or (coupled) multi-qubit coherence on the
timescales which are required for performing a certain task, which need to be shorter
than the timescales on which detrimental effects such as the coupling to uncontrolled
degrees of freedom manifest themselves.3

The arguably most advanced control on the microscopic properties of matter
is realized in quantum optics, which deals with the interaction of the quantum
constituents of matter with quantized electromagnetic field modes. The fact that
quantum information processing actually has an experimental perspective is a con-
sequence of the tantalizing experimental progress in quantum optics during the last

2 “Mesoscopic” systems [40] are usually understood as composite quantum systems which medi-
ate between the microscopic and the macroscopic worlds, being sufficiently small for quantum
effects to emerge. As a matter of fact, one of the origins of this research area is the continuing
miniaturization of integrated circuitry used in traditional, “classical” computers, what implies that
the quantum granularity of matter – manifest, e.g., through conductance fluctuations [17] across
mesoscopic conductors, and usually assumed to be smoothed on the macroscopic scale, due to
decoherence effects – has to be taken into account. Note that the line of thought is somewhat
exactly opposite in our present context: Here, the question is not how much we have to reduce the
size of a device to witness quantum effects, but rather whether there exists a fundamental size limit
beyond which quantum effects cannot be observed anymore [2].
3 The coupling to uncontrolled degrees of freedom implies decoherence, noise, and decay, the
characteristic features of “open system dynamics.” For example, strong resonant driving of an
ionic two-level system may induce residual, non-resonant coupling to a third atomic level. If the
latter remains unobserved in the specific experimental setting, what is equivalent of tracing over
this part of the ionic Hilbert space, decoherence is induced on the two-dimensional subspace. Such
a mechanism is believed to limit the maximally achieved gate fidelity, e.g., in the ion trap experi-
ments in Innsbruck [44]. Possible strategies to reduce such detrimental effects are error correction
and decoherence-free subspaces [50, 30].
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decades [35, 25, 22, 45, 9]. Mesoscopic and/or solid state devices start only now
to progress in the same direction of deterministic quantum control [56, 51, 32].
Remember, however, that only a solid state/semiconductor approach seems to bear
the actual potential of scalability [47].4 Also note that coherent control may play
an important role in photochemistry [18] and biological processes [5, 8], thus the
recent blossoming of “molecular quantum computing”; see [53] for an example.

2 A Single Qubit in Interaction with the Radiation Field

In this chapter, we start out with the dynamics and the control of a single qubit,
as the elementary constituent of a quantum register. The control can be exerted
by a classical or a quantized electromagnetic field, what will naturally lead us
to “entanglement” (see chapter “Bipartite Quantum Entanglement”) between the
atomic and the field degrees of freedom. This will then be used as the fundamental
tool for entangling atoms or for executing simple quantum logic operations in chap-
ter “Quantum Probability and Quantum Information Theory”. As much as single
qubit control is concerned, we closely follow the presentation in [31, 33, 13, 26],
which the interested reader should consult for more (technical) details.

2.1 A Two-Level System Subject to a Classical Field – The
Semiclassical Model

Consider a two-level system (e.g., an atom – we shall see later what a “two-level
atom” is) under periodic forcing by an oscillating electric field F cos(ωt), with the
linearly polarized field parallel to the x̂-direction, F||x̂ .

The energy eigenstates of the unperturbed atom are determined through

H0| j〉 = E j | j〉 , j = 0, 1 , (3)

and the total Hamiltonian reads

H = H0 + V = H0 + e x F cos(ωt)︸ ︷︷ ︸
V (t)

. (4)

With the ansatz

|ψ〉 = c0e−i E0 t/h̄ |0〉 + c1e−i E1 t/h̄ |1〉 , (5)

and the assumption

4 That is why proposals of “silicon quantum computing” [28] earned a lot of attention.
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〈 j |V | j〉 = 0 , (6)

for parity reasons,5 we obtain the equations of motion for the amplitudes of both
levels:

i h̄ċ0 = c1〈φ0|V |φ1〉 , (7)

i h̄ċ1 = c0〈φ1|V |φ0〉 , (8)

where |φ j 〉 = e−i E j t/h̄ | j〉. More explicitly, with (4),

〈φ0|V |φ1〉 = e−i (E1−E0) t/h̄〈0|V |1〉
= e−iω0 t e F 〈0|x |1〉 cos(ωt)

= eiω0 tV h̄ cos(ωt) ,

(9)

ergo6

i ċ0 = c1e−iω0 tV cos(ωt) , (10)

i ċ1 = c0e+iω0 tV∗ cos(ωt) , (11)

where we introduced the short-hand notation

V = e F 〈0|x |1〉 . (12)

Given (10) and (11), also the evolution equation for the statistical operator of the
two-level system (σ = |ψ〉〈ψ |) can be derived: With

σ00 = |c0|2 = c0c∗0 , σ11 = |c1|2 = c1c∗1 – “populations,” (13)

σ01 = c0c∗1 , σ10 = c∗0c1 = σ ∗01 – “coherences,” (14)

one finds7

σ̇11 = −σ̇00 = −i cos(ωt)
[
σ01V∗eiω0 t − σ10Ve−iω0 t

]
, (15)

σ̇01 = σ̇ ∗10 = iV cos(ωt)e−iω0 t [σ00 − σ11] . (16)

Rewriting (15) and (16) with cos(ωt) = (eiω t+e−iω t )/2 leads to the appearance of
terms∼ ei (ω0−ω)t and∼ ei (ω0+ω) t (we shall encounter them again later). Assuming

5 Exercise: Why/when is this a good assumption?
6 Exercise: Convince yourselves that the norm |c0|2 + |c1|2 = 1 is conserved for all times by (10)
and (11).
7 Verify this, as an exercise!
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that ω0 - ω (i.e., “near-resonant driving,” as the jargon says), we can neglect the
rapidly (with frequency ω0 + ω) oscillating terms (“rotating wave approximation,”
in short “RWA”) and obtain

σ̇11 = − i

2

[
σ01V∗ei (ω0−ω) t − σ10Ve−i (ω0−ω) t

]
, (17)

σ̇01 = i

2
Vei (ω−ω0) t [σ00 − σ11] . (18)

The above equations can be solved with the ansatz [31]

σ j j = σ (0)j j exp(λt) , j = 0, 1, (19)

σ01 = σ (0)01 exp
(
− i (ω0 − ω) t

)
exp(λt) , (20)

σ10 = σ (0)10 exp
(

i (ω0 − ω)t
)

exp(λt) . (21)

After substitution into (17) and (18), this leads to a secular equation with roots

λ1 = 0, λ2 = iΩ, and λ3 = −iΩ, (22)

whereΩ = √
(ω0 − ω)2 + |V|2. These are then used to express the general solution

σi j = σ (1)i j + σ (2)i j exp(iΩ t)+ σ (3)i j exp(−iΩ t) , (23)

as a linear superposition of the associated eigensolutions, with coefficients σ (k)i j ,

k = 1, 2, 3 (to be determined by the specific initial conditions).8 This implies
another condition of validity for the RWA: It must also be consistent with the sys-
tem dynamics, i.e. (ω0 + ω)−1 must be much smaller than the typical timescale of
system’s evolution: By virtue of (23), this requires (ω0 + ω)−1 " Ω .

For the specific initial condition9 σ11 = 0 and σ01 = 0 it follows10

σ11(t) = |V|2
Ω2

sin2
(

1

2
Ωt

)
, (24)

8 Note that, for the terms given by (20) and (21), σ (k)i j also incorporates the “trivial” time depen-

dence exp
(
∓ i (ω0 − ω) t

)
.

9 This uniquely defines the initial state – why?
10 Exercise: Derive this result with the above ansatz!
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σ01(t) = e−i (ω0−ω) t V
Ω2

sin

(
1

2
Ω t

)
(25)

×
[
−(ω0 − ω) sin

(
1

2
Ω t

)
+ iΩ cos

(
1

2
Ω t

)]
,

and, at exact resonance, ω0 = ω:

σ11(t) = sin2
(

1

2
|V|t

)
, (26)

σ01(t) = i
V
|V| sin

(
1

2
|V|t

)
cos

(
1

2
|V|t

)
. (27)

Equations (17) and (18) are also known as “optical Bloch equations” (here in their
simplest form). Their solution (27) reflects the “Rabi oscillation” of the population
between levels |0〉 and |1〉. Obviously, the amplitude and frequency of these oscilla-
tions depend on the detuning Δ = ω0 − ω. The presence of |V|2 in the expression
for Ω in (27) expresses a shift of the coupled atom–field system’s eigenfrequencies
(or eigenenergies) with respect to the unperturbed frequencies ω and ω0. This shift
is known as the “dynamical” or “AC11 Stark shift” [31, 33, 39],12 which is also the
origin of light-induced potentials used to trap neutral atoms at the focus of laser
beams [45]. Remember that a potential energy gradient implies a force. Hence,
when an atom is exposed to a laser field with spatial variation of its intensity, it
will experience an AC shift-induced gradient or shift of its electronic eigenenergies,
tantamount of a potential gradient, leading to a force [13].

2.2 Dynamics on the Bloch Sphere

The optical Bloch equations (17) and (18) have a geometrical interpretation, which
becomes apparent upon substituting

σ̃00 = σ00 , σ̃11 = σ11 , (28)

σ̃01 = σ01ei (ω0−ω) t , σ̃10 = σ10e−i (ω0−ω) t = σ̃ ∗01 . (29)

11 “AC” for “alternating current,” since induced by an oscillating electromagnetic field.
12 Exercise: Have a look at [12], and there at the sections on avoided level crossings. Interpret
the AC Stark shift in terms of the quantities which characterize an avoided level crossing. In
[12], the avoided crossing results from solving the stationary eigenvalue equation for the two-level
Hamiltonian H = H0 + W , with H0 = E0|0〉〈0| + E1|1〉〈1| and W = W00|0〉〈0| + W11|1〉〈1| +
W10|1〉〈0| + W01|0〉〈1|, when the eigenvalues E± of H are plotted as a function of the detuning
δ = (E1 − E0)/2. For the identification of that treatment with our present problem, identify δ with
our present definition of the detuning Δ, as the frequency mis-match between the driving field
frequency and the driven atomic transition.
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This transforms (17) and (18) into

˙̃σ11 = − i

2

[
σ̃01V∗ − σ̃10V

]
, ˙̃σ00 = − ˙̃σ11 , (30)

˙̃σ01 = i

2
V

[
σ̃00 − σ̃11

]+ iΔ σ̃01 , ˙̃σ10 = ˙̃σ ∗01 . (31)

Now we introduce the new variables

u = σ̃10 + σ̃01 – real part of coherence,

v = i (σ̃10 − σ̃01) – imaginary part of coherence,

w = σ̃11 − σ̃00 – population exchange,
(32)

the time derivatives of which turn out to be, with the help of (31) and the assumption
that V be real,13

u̇ = −Δv , (33)

v̇ = −Vw +Δ u , (34)

ẇ = Vv . (35)

The “Bloch vector”

S = ux̂ + v ŷ + wẑ , (36)

which has unit modulus, because of

|S|2 = |u|2 + |v|2 + |w|2 = |c0|2 + |c1|2 = 1 , (37)

d|S|2
dt

= 0 . (38)

evolves on the surface of the unit sphere, according to the evolution equation14

Ṡ = Q × S , with Q = V x̂ +Δ ẑ = (V, 0,Δ) , (39)

as illustrated in Fig. 3. The center of this sphere corresponds to the maximally mixed
state, since S = 0 if and only if w = u = v = 0, i.e., σ̃00 = σ̃11 and σ̃01 = σ̃10 = 0,
what implies σ̃ = 1/2 (|0〉〈0| + |1〉〈1|).

13 Exercise: Derive this result.
14 Mind the analogy of (39) with dL/dt = Ω × L, L the angular momentum, Ω the precession
frequency in the classical dynamics of rigid bodies (e.g., motion of a top) [34].
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Fig. 3 The Bloch sphere,
spanned by the unit vectors x̂ ,
ŷ, and ẑ. For a pure state
σ = |ψ〉〈ψ |, the tip of the
Bloch vector S moves on the
unit sphere. If |S| < 1, the
state described by S is mixed

2.3 Some Special Cases and Implications

Let us briefly discuss some special cases and some implications of the above and
the jargon which comes with it:

• w = 1, i.e., σ̃11 = 1, σ̃00 = 0: “complete inversion” (of the population of the
field-free atomic eigenstates).

• w = −1, i.e., σ̃11 = 0, σ̃00 = 1: “atom in the ground state.”
• Δ = 0: This implies Q = V x̂ , thus S rotates in the plane defined by x̂ .
• If V is time dependent through a time-dependent amplitude F(t) of the driving

field (see (4)), then the Bloch vector rotates by an angle

θ(t) =
∫ t

0
V(t ′) dt ′ , (40)

which is also called “the area under the pulse” (remember that, according to (12),
V(t) is equivalent to F(t), up to a constant). This allows to initialize the qubit
in arbitrary states on the Bloch sphere. Accordingly, one speaks of “π/2-pulses,”
for θ(t) = π/2, which are nowadays routinely used to prepare states of the type
|ψ0〉 = (|0〉+ |1〉)/

√
2, and of “π pulses,” θ(t) = π , to prepare |ψ0〉 = |1〉, from

the ground state |0〉; see Fig. 4.
A “2π -pulse” leaves the atomic state unchanged. (For more details, see [33],

Chap. 15.)
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Fig. 4 Evolution of the Bloch vector on the Bloch sphere, under a π/2-pulse (left) and under a
π -pulse (right). Initial and final states are represented by the pale and black arrows, respectively

• If we want to initialize several qubits, we could do this locally with such type of
transformation. Technically, this requires the “single-qubit addressability” in any
experimental setup and has important consequences, e.g., for the experimental
geometry [36, 37].

2.4 The Jaynes–Cummings Model

We now revisit the atom–field interaction, but this time also the field is quantized
(as described in chapter “Field-Theoretical Methods”, Sect. 3.1). More precisely,
we will consider the interaction of a two-level atom (whatever this may be . . .) with
a single mode of the quantized electromagnetic field, or, rather, the energy exchange
between the associated degrees of freedom (one for the atom, one for the field mode–
on a more abstract level, the latter is simply a quantized, one-dimensional harmonic
oscillator).

From an atomic physicist’s point of view, one typically is interested in the evo-
lution of the electronic state of the atom under the external field – from a quantum
optician’s point of view one is interested in the excitation dynamics of the field
mode. Both perspectives are perfectly legitimate and have equal right, but give
rise to a zoology of different physical phenomena, by simply changing the various
parameters which determine the atom–field dynamics.

Note that two-level atoms do not really exist in nature, but they can be “engi-
neered” with high precision (what is crucial for quantum information purposes) in
the lab,15 in particular when the field mode’s frequency is near-resonant with the
selected atomic transition [25] (Fig. 5).

The state vector of the atom at time t has the form

|ψatom〉 = cu(t)|u〉 + cd(t)|d〉 (41)

15 See [46, 23] for a detailed account of the involved approximations.
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Fig. 5 The abstract skeleton of the Jaynes–Cummings picture: A two-level atom with upper and
lower energy eigenstates |u〉 and |d〉, respectively, is coupled to a single mode of the quantized
electromagnetic field – which, formally, is nothing else but a quantized harmonic oscillator (see
chapter “Field-Theoretical Methods”, Sect. 2). In the laboratory, such single field modes can be
defined and isolated against the electromagnetic vacuum with stunning precision in micromaser
experiments [35, 25]. Preparation of the harmonic oscillator in an energy eigenstate then cor-
responds to the experimental preparation [6, 7, 54] of a Fock state of the radiation field (with
well-defined occupation number), and it is a highly nontrivial task, essentially because Fock states
are extremely non-classical states of the field [31, 33]. An important additional assumption for the
Jaynes–Cummings approximation, (62), is the near-resonant coupling between atom and field, i.e.,
the atomic transition frequency ω0 should be close to the photon frequency ω, to justify the neglect
of anti-rotating terms in the rotating wave approximation (see the text for details)

(where “u” stands for “up” and “d” for down) and the state of the field, in the Fock
basis (see chapter “Field-Theoretical Methods”, Sect. 2.4),

|ψfield〉 =
∑

n

cn(t)|n〉 . (42)

The collective atom–field state is the tensor product of both,

|ψatom+field〉 =
∑

n

[
cn,u(t)|u〉 ⊗ |n〉 + cn,d(t)|d〉 ⊗ |n〉] , (43)

and, in general, not separable (this means, see chapter “Bipartite Quantum Entan-
glement”, Sect. 2, “entangled”).

We write the total atom–field Hamiltonian as

H = H atom
0 + Hfield

0 + V , (44)

with

H atom
0 = h̄ (Eu |u〉〈u| + Ed |d〉〈d|) , (45)

Hfield
0 = h̄ω

(
a†a + 1

2

)
, (46)

V = h̄g
(

a + a†
)
(σ− + σ+) , (47)

where we use the atomic lowering and raising operators σ− and σ+, defined as
suitable linear combinations of the Pauli matrices σx , σy , and σz ,16

16 Exercise: Express the Bloch vector S, (36), in terms of the Pauli matrices.
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σ− = |d〉〈u| =
(

0 0
1 0

)
= 1

2

(
σx − i σy

)
, (48)

σ+ = |u〉〈d| =
(

0 1
0 0

)
= 1

2

(
σx + iσy

)
, (49)

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (50)

as well as the atom–field coupling constant g given by

g = −〈d|x |u〉
h̄

F sin(kz) . (51)

This latter expression is given in units of the electronic charge e (thus the negative
sign), assumes the polarization of the quantized field mode along the x̂-axis, while
the field’s wave vector k points along the ẑ-direction. The expression for g is com-
pletely analogous to (9), with the only amendment of an explicit spatial dependence,
which we will, however, immediately omit again. If we assume that the wavelength
of the field (λ = 2π/k) is large with respect to the typical dimension of the atom
(of the order of Angstroms), this is justified. This approximation is known as the
“dipole approximation” [31].

The terms (a + a†) and (σ− + σ+) in (47) represent the time-dependent part of
the driving field and the induced transitions |u〉 → |d〉 and |d〉 → |u〉, respectively.
Thus, (47) represents a coupling term V = −e F(R, t) · r (with R the position of the
atomic nucleus) which can be derived from the Schrödinger equation for an electron
under the influence of a vector potential A.

Note that (47) contains the following operator products:

• aσ− – This mediates the transition u → d and the absorption of a photon, corre-
sponding to a total energy loss ∼ 2h̄ω;

• aσ+ – This expresses the transition d → u and the absorption of a photon (“stim-
ulated absorption”), the total energy is conserved;

• a†σ− – This enforces the transition u → d, together with the emission of a
photon (“stimulated emission”), again without net cost of energy;

• a†σ+ – which, together with an energy gain of ∼ 2h̄ω, describes the emission of
a photon and the transition d → u.

Transformation of (47) to the interaction picture17 yields the new interaction term
(with (45) and (46))

17 Here is a short reminder: Given the Schrödinger equation

ih̄|ψ̇〉 = H |ψ〉 , with H = H0 + V , (52)

the “trivial” time evolution (which we suppose to be known) generated by H0 (which we assume
to be autonomous, i.e., time-independent) can be transformed away by defining
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VI = h̄ g exp

(
iω

(
a†a + 1

2

)
t

)
(a + a†) exp

(
−iω

(
a†a + 1

2

)
t

)

exp

(
i

(
Eu 0
0 Ed

)
t

) (
0 1
1 0

)
exp

(
−i

(
Eu 0
0 Ed

)
t

)
.

(56)

With the identities18

exp

[
iω

(
a†a + 1

2

)
t

]
(a + a†) exp

[
−iω

(
a†a + 1

2

)
t

]
(57)

= a exp(−iω t) + a† exp(iω t)

and

exp

[
i

(
Eu 0
0 Ed

)
t

] (
0 1
1 0

)
exp

[
−i

(
Eu 0
0 Ed

)
t

]
(58)

= σ+ exp [i (Eu − Ed) t]+ σ− exp [−i (Eu − Ed) t]

the interaction term turns into

VI = h̄g {aσ− exp [−i (ω + ω0) t]+ aσ+ exp [−i (ω − ω0) t]

+ a†σ− exp [i (ω − ω0) t]+ a†σ+ exp [i (ω + ω0) t]
}
.

(59)

In (59) the energy conserving terms aσ+ and a†σ− carry a slow time dependence,
provided ω - ω0,

∼ exp[± i (ω − ω0) t] , (60)

and the energy non-conserving terms carry a rapid time dependence

∼ exp[± i (ω + ω0) t] . (61)

Upon integration of the Schrödinger equation in the interaction picture, the rapidly
oscillating terms acquire a denominator 1/(ω + ω0), as opposed to the slow terms

|ψ̃(t)〉 = T−1|ψ(t)〉 , where T = e−i H0 t/h̄ ; (53)

Ṽ (t) = T−1V T , H̃0 = H0 . (54)

The time evolution of |ψ̃〉 is now given by

i h̄| ˙̃ψ〉 = Ṽ |ψ̃〉 (55)

and describes the time evolution induced by the perturbation V , relative to the unperturbed, trivial
dynamics induced by H0.
18 Which the keen reader should prove, as an exercise.
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which get a “resonance denominator” 1/(ω − ω0). The latter are therefore domi-
nant in the time evolution, for near-resonant driving and 1/(ω + ω0) " g

√
n + 1,

what once again motivates the rotating wave approximation RWA,19 i.e., to drop the
rapidly oscillating terms.20 We thus arrive at the final form of the Jaynes–Cummings
interaction:

VI = h̄ g

{
a σ+ exp

(
− i (ω − ω0) t

)
+ a† σ exp

(
i (ω − ω0) t

)}
. (62)

2.5 Solutions for the Field Initially in a Fock State

Let us now investigate a bit closer the dynamics induced by VI , when the quantized
field is initially prepared in a Fock state |n〉 – this will reveal as one of the corner
stones of a large number of fundamental implementations of quantum information
processing (see chapter “Field-Theoretical Methods”).

The interaction VI mediates only transitions from |d, n + 1〉 = |d〉 ⊗ |n + 1〉 to
|u, n〉 = |u〉 ⊗ |n〉 and back, and the general state vector thus has the form

|ψ(t)〉 = cu,n(t)|u, n〉 + cd,n+1|d, n + 1〉 . (63)

Solution of the Schrödinger equation (in the interaction picture) then leads to the
following expressions for the time-dependent amplitudes:

• For cu,n(0) = 0, cd,n+1(0) = 1, at resonance Δ = ω − ω0 = 0:

cu,n(t) = −i sin
(

g
√

n + 1t
)
, (64)

cd,n+1(t) = cos
(

g
√

n + 1t
)
; (65)

• for cu,n(0) = 1, cd,n+1(0) = 0, Δ = 0:

cu,n(t) = cos
(

g
√

n + 1t
)
, (66)

cd,n+1(t) = −i sin
(

g
√

n + 1t
)
. (67)

Consequently, for (66) and (67), the populations in the upper/lower state are given
by

19 See also our earlier discussion following (15) and (16). Once again, g
√

n + 1 fixes the typical
system timescale, as will become evident hereafter.
20 Note that this is a special variant of the secular approximation, which is ubiquitous, e.g., also in
the derivation of master equations or in nonlinear resonance analysis in classical mechanics.
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Pu(t) = |〈u|ψ(t)〉|2 = cos2
(

g
√

n + 1t
)
, (68)

Pd(t) = sin2
(

g
√

n + 1t
)
, (69)

and one finds21 for

• the expectation value of the field amplitude

〈F〉 = 〈ψ | (a† + a) |ψ〉 = 0 ; (70)

• the photon number

〈ψ |a†a|ψ〉 = sin2
(

g
√

n + 1t
)
; (71)

• the photon number variance

〈ψ |Δ2n|ψ〉 = 1

4
sin2

(
2g
√

n + 1t
)
. (72)

This very nicely illustrates how energy – in the form of photons – is exchanged
between the atom and the field modes (see Fig. 6): The atom, initially in the upper
state and exposed to the resonant single-mode field, undergoes Rabi oscillations.
After a π/2 evolution, the atom is in a balanced coherent superposition of |u〉 and
|d〉, and the expectation value of the photon number is n+1/2, since, at that instance,
the atom already released a photon in the field mode, with probability 1/2. Conse-
quently, the photon number variance is maximal at this very moment. At phase
π , the atom underwent a π -pulse, resides in its ground state, and deterministically
delivered a photon into the field mode. Accordingly, the photon number in the field
has increased by 1, and the photon number variance vanishes, due to the determin-
istic character of the process. As time passes, the exchange of one energy quantum
continues periodically. Note that this even happens when the field mode initially
resides in its vacuum state, i.e., initially, n = 0 – then we speak of “vacuum Rabi
oscillations” (which were observed experimentally [7]).22

21 Convince yourselves, as an exercise.
22 The “Floquet picture” [19, 49, 41, 58], where the field is once again treated classically, allows a
completely analogous treatment as the “dressed state picture” [14] expressed in (43) and (47), with
(essentially) the same tensor structure Hatom⊗Hfield of the underlying Hilbert space. In particular,
it defines the appropriate framework when dealing with more complicated atomic/molecular spec-
imens. The essential approximation with respect to the dressed state picture is the neglect of the
change of the field state upon emission/absorption of a photon by the atom. The Floquet picture
naturally incorporates co- and anti-rotating terms (the latter are neglected in the Jaynes–Cummings
picture). It therefore defines an excellent framework to assess the limitations of RWA, as well as of
the two-level approximation. A very nice discussion of the contribution of the anti-rotating terms
can be found in Sect. III.B of [49].
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Fig. 6 The Jaynes–Cummings interaction (62) couples only neighboring photon (Fock) states of
the field. Thus, if the field is initially prepared in a single Fock state, the Rabi oscillation of the
atomic population Pi (t), i = u, d (top), is associated with the periodic oscillation of the field
population between Fock states |n〉 and |n + 1〉. (Middle): The excitation energy of the atom – due
to the resonance condition,ω0 = ω, equal to a single quantum of the field excitation, i.e., a photon –
is periodically exchanged between the atomic and the field degrees of freedom. Consequently, the
photon number variance (bottom) passes through a maximum each time the atom (or the field) is
in a balanced coherent superposition of |u〉 and |d〉 (|n〉 and |n + 1〉). Note that this elementary
process can also be used to transfer quantum information between a quantum system with discrete
degrees of freedom (the atomic qubit or a string of atomic qubits) and a system with continuous
degrees of freedom (the harmonic oscillator) [57]

3 Qubit Entanglement Through the Jaynes–Cummings
Interaction

The Jaynes–Cummings interaction (44) describes the dynamics of a two-level sys-
tem resonantly coupled to a quantized harmonic oscillator.

3.1 Atom–Atom Entanglement in Cavity QED

This has been one of the first demonstrations of the controlled entanglement of
two qubits [24]. The idea is the following: The two qubits are realized by two
two-level atoms, which interact, one after the other, with a single-mode quantized
field which is resonant with the atomic transition frequency, thus described by the
Jaynes–Cummings interaction. If we arrange things such that the first atom exits the
interaction region with the field in a balanced coherent superposition of the upper
and the lower states, the mode will be in a balanced superposition of n and n + 1
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photons (remember Fig. 6); hence the first atom and the field will be in a maximally
entangled state (see chapter “Bipartite Quantum Entanglement”). The second atom
will then in some sense recover the information from the field – which was left there
by the first atom – and, at the end, the two atoms will be maximally entangled, while
the mode will remain as a disentangled spectator. In this approach, the mode simply
plays the role of an intermediate information storage (kind of a “data bus”). We
could also say that the atoms, while not directly interacting with each other, interact
through the field – a scenario which is quite generic, and encountered in many, quite
distinct physical contexts [48, 1].

Specifically (see Fig. 7),

• the atom–field system (indices 1, 2 denote atoms 1 and 2) is initially prepared in
the state

|ψ0〉 = |u1〉 ⊗ |d2〉 ⊗ |0〉 . (73)

• The velocity of atom 1 is chosen such that its interaction time t1 with the field
mode satisfies

Ωt1 = π

2
, Ω = 2g

√
n + 1|n=0 , (74)

where Ω is the vacuum Rabi frequency. According to (66) and (67), the atom
leaves the cavity – which defines and confines the field mode – with equal prob-
ability 1/2 in the upper and the lower atomic states.

• The total atom–field state after the first and before the second atom’s passage
across the cavity consequently reads

Fig. 7 (courtesy of Serge Haroche) Experimental setup for atom–atom entanglement, mediated by
a quantized field mode of a high-quality (“high Q”) microwave resonator [24] – marked by C in
this plot. The atoms are provided by an atomic jet from an oven O, velocity selected in the area
V (by lasers L1 and L1

′), excited to the Rydberg levels 50 or 51 in zone B (by laser L2), before
they interact with the quantized field mode deconfined and confined by C. Within the low-quality
analyzing cavity R, a π/2-pulse can be applied to the atoms, for diagnostic purposes. Finally, De
and Dg are field ionization detection units, where the final state of the atoms (“e” for excited state
and “g” for ground state) after exit from C can be read out



270 F. de Melo and A. Buchleitner

|ψ ′〉 = 1√
2

(
|u1〉 ⊗ |d2〉 ⊗ |0〉 − i |d1〉 ⊗ |d2〉 ⊗ |1〉

)
. (75)

• If now the velocity of the second atom is chosen such that t2 = 2t1, i.e.,Ωt2 = π ,
then

– the second atom will leave the cavity in |d2〉, provided the first atom left the
field mode empty,

– the second atom leaves the cavity in |u2〉, with unit probability, if the first atom
did deposit a photon in the field (due to (65), with n + 1 = 1).

• The final atom–field state, after exit of the second atom from the cavity, reads

|ψ〉 = 1√
2

(
|u1〉 ⊗ |d2〉 ⊗ |0〉 − |d1〉 ⊗ |u2〉 ⊗ |0〉

)
,

= 1√
2

(
|u1〉 ⊗ |d2〉 − |d1〉 ⊗ |u2〉

)
⊗ |0〉 .

(76)

|ψ〉 is maximally entangled in the atomic degrees of freedom and separable in
atoms and field.23

While the above procedure is conceptually almost trivial, the experimental “mise
en œuvre” is an art, since all the individual steps demand the precise experimental
control of single quantum objects!

• Atom–atom entanglement is here realized through a two-step process, where we
(a) entangle atom 1 with the field and (b) entangle atom 2 with atom 1 while
disentangling the field from atom 1.

• To ensure that the atoms undergo the desired π/2 and π pulses, the individual
atomic velocities have to be controlled very well: Indeed, in the experiment, the
atoms, which are extracted from an atomic jet, are selected at velocities v1 =
337 ms−1 and v2 = 432 ms−1, with an uncertainty of only Δv - ±0.4 ms−1!

• The above theoretical model completely neglects incoherent processes which
might perturb the entanglement creation process. However, all cavities which
confine a single-mode field have a finite damping coefficient, i.e., the photons
which are trapped in such cavities will leak out with a certain probability, on
a characteristic timescale τcav [25]. The experiment uses a “high-quality cav-
ity,” with “high Q,”24 and τcav = 112 µs. Thus, a photon survives for approx.
0.1 ms in the resonator, and the entanglement must therefore be created on a much
shorter timescale.

• Furthermore, atoms in excited electronic states do emit spontaneous photons –
the quantum manifestation of the radiation emitted by an accelerated charge

23 Exercise: Why, in the final state detection with detectors De,g, is it important to measure the
population of the excited state before that of the ground state?
24 The Q factor is proportional to τcav [43].
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[4]. Once again, the experimentalists have to prepare atomic states with spon-
taneous emission rates τ−1

spon as small as possible, to make sure that the informa-
tion encoded in the atomic excitation is not lost spontaneously (and this means
inadvertently) on the timescale of the entangling process. In the experiment that
we presently focus on, this was achieved by preparing the atoms in circular Ryd-
berg states with principal quantum numbers nd = 50 (the d state) and nu = 51
(the u state).25 The efficient production of circular Rydberg states is in itself a
masterpiece [27, 15, 21, 20], since such states are defined by maximal values
of angular momentum and angular momentum projection, � = m − 1, respec-
tively. Therefore, one first needs to pump maximal excitation into the angular
momentum degree of freedom. Once this is done, one has to protect the fragile
creature against any kind of stray field, since such Rydberg states exhibit a large
polarizability, and therefore react very sensitively to any weak perturbation.

• Once the experimentalists succeed to perform the necessary single qubit π/2 and
π pulses on timescales much faster than τcav,spon, they have reached the “strong
coupling regime.” This was accomplished many years ago with cavity QED [52,
25] and ion traps [42], though only very recently with hybrid qubits [56].

• Not surprisingly, given all the above experimental complications and unavoid-
able error sources, the experiments could not demonstrate maximal entangle-
ment, which would imply conditional probabilities pu,d = pd,u = 1/2 and
pu,u = pd,d = 0 to observe the second atom in |u〉(|d〉) provided the first atom
exited in |d〉(|u〉).26 Instead, the experiment produced pu,d = 0.44, pd,u = 0.27,
pd,d = 0.23, and pu,u = 0.06. This simply reminds us of the challenge ahead
when we want to build a large-scale quantum computer where we have to control
the coherent dynamics of a large number of qubits: Perfection is really hard to
achieve in the macroscopic world.

3.2 Realizing a CNOT Gate with Trapped Cold Atoms

Much as in the cavity QED setting, the Jaynes–Cummings model can also be imple-
mented with N ions loaded into a linear ion trap, where each individual ion can
be addressed individually by a laser (see Fig. 8) [11]. The ions in the trap repel
each other through Coulomb forces and therefore undergo collective motion in their

25 Circular Rydberg states [27, 15, 21, 20] belong to the most “classical” eigenstates of single
electron atoms: The electronic density is localized along an eccentricity zero classical Kepler tra-
jectory and looks much like a swimming ring centered around the nucleus, in the plane defined by
the quantization axis.
26 Note that, in principle, the simple verification of these conditional probabilities does not prove
entanglement generation. The same results would be expected for the state ρ = (|u〉〈u| ⊗ |d〉〈d| +
|d〉〈d| ⊗ |u〉〈u|)/2 – which is separable. This is the reason why in a “Bell experiment” one has
to perform the measurement in different bases (see chapter “Quantum Probability and Quantum
Information Theory”, Sect. 6.4 and references therein). In the present experiment, the coherence
between |u1〉 ⊗ |d2〉 and |d1〉 ⊗ |u2〉 was therefore explicitly verified in a second, complementary
measurement.
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Fig. 8 (courtesy of Ignacio Cirac) Experimental scheme suggested in [11] (and realized in [44])
for the realization of a CNOT gate with trapped ions. (a) The experimental geometry, with the
horizontal arrows indicating the ionic translational degree of freedom, and (b) the electronic level
structure of an individual ion (one and the same for all ions). e and g label the ionic excited
and ground states, respectively, and the suffix q = 0, 1 of |eq 〉 labels the (degenerate) magnetic
sub-level of the excited state. Transitions between |g〉 and |e0〉/|e1〉 are driven by linearly/circularly
polarized laser beams, respectively. Single ion addressability is required to perform the local oper-
ations on the individual ions

external (translational) degree of freedom (along the trap axis, which is weakly con-
fined by a shallow harmonic potential). The dynamics of ion n (∈ {1, . . . , N }), with
degenerate excited states |e0〉 and |e1〉 (see Fig. 8), under its external addressing
lasers (which drive the transitions g ↔ eq , q = 0, 1) is described by the effective
(Jaynes–Cummings) Hamiltonian27 (in the interaction picture!)

Hn,q = Ωeff

2

(
|eq〉n〈g|a + |g〉n〈eq |a†

)
, (77)

with Ωeff the effective Rabi frequency. Rather than excitations of the radiation
field – photons – in our previous example in Sect. 3.1, a and a† do here annihilate
and create, respectively, excitations of the collective center-of-mass motion in the
translational degree of freedom – phonons. Hence, the energy is here exchanged
between the electronic degrees of freedom of the ions and one single (quantized)
mode of their collective translational dynamics, with a characteristic frequencyΩeff
[11, 42]. We will now convince ourselves that Hamiltonian (77) suffices to imple-
ment a CNOT gate between two ions, using the phonons as a “data bus.” To see
this, we have to remember that a CNOT gate performs the mapping |ε1〉 ⊗ |ε2〉 →
|ε1〉 ⊗ |ε1 ⊕ ε2〉, with ⊕ the addition modulo 2, and ε1, ε2 ∈ {0, 1}.

27 This Hamiltonian implicitly assumes the “Lamb–Dicke approximation” [10, 55], which requires
that the ions be spatially localized to dimensions smaller than the addressing laser wavelength, i.e.,
that the position uncertaintyΔx of the center-of-mass wavefunction of the atom in the trap potential
is much smaller than λL , the laser wavelength.
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The time evolution generated by Hn,q induces the following mapping under a
kπ -pulse (i.e., Ωefft = kπ , by virtue of (64), (65), (66), and (67)):

U |g〉n|0〉 → |g〉n|0〉 , (78)

U |g〉n|1〉 → cos

(
kπ

2

)
|g〉n|1〉 − i sin

(
kπ

2

)
|eq〉n|0〉 , (79)

U |eq〉n|0〉 → cos

(
kπ

2

)
|eq〉n|0〉 − i sin

(
kπ

2

)
|g〉n|1〉 . (80)

With the three-step process

(i) π -pulse on the mth ion, U k=1,q=0
m , on the 0-transition;

(ii) 2π -pulse on the nth ion, U k=2,q=1
n , on the 1-transition;

(iii) π -pulse on the mth ion, U k=1,q=0
m , on the 0-transition;

i.e., the complete transformation

Um,n = U 1,0
m U 2,1

n U 1,0
m , (81)

we can thus create the mapping 28

|g〉m |g〉n|0〉 → |g〉m |g〉n|0〉 → |g〉m |g〉n|0〉 → |g〉m |g〉n|0〉 , (82)

|g〉m |e0〉n|0〉 → |g〉m |e0〉n|0〉 → |g〉m |e0〉n|0〉 → |g〉m |e0〉n|0〉 , (83)

|e0〉m |g〉n|0〉 → − i |g〉m |g〉n|1〉 → i |g〉m |g〉n|1〉 → |e0〉m |g〉n|0〉 , (84)

|e0〉m |e0〉n|0〉 → − i |g〉m |e0〉n|1〉 → − i |g〉m |e0〉n|1〉 → −|e0〉m |e0〉n|0〉 . (85)

By linearity, this implies

|g〉m (|g〉n ± |e0〉n) |0〉 → |g〉m (|g〉n ± |e0〉n) |0〉 , (86)

|e0〉m (|g〉n ± |e0〉n) |0〉 → |e0〉m (|g〉n ∓ |e0〉n) |0〉 . (87)

Hence, with a further local, single ion transformation (modulo normalization),

V n :|g〉n → |g〉n − |e0〉n ,
|e0〉n → |g〉n + |e0〉n ,

(88)

V n− :|g〉n + |e0〉n → |e0〉n ,
|g〉n − |e0〉n → |g〉n ,

(89)

28 Note that this evolution already implements a CPHASE (conditional phase) gate.
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the operation V n−Um,n V n produces the desired CNOT gate:

|g〉m |g〉n|0〉 → |g〉m (|g〉n − |e0〉n) |0〉 → |g〉m (|g〉n − |e0〉n) |0〉
→ |g〉m |g〉n|0〉 , (90)

|g〉m |e0〉n|0〉 → |g〉m (|g〉n + |e0〉n) |0〉 → |g〉m (|g〉n + |e0〉n) |0〉
→ |g〉m |e0〉n|0〉 , (91)

|e0〉m |g〉n|0〉 → |e0〉m (|g〉n − |e0〉n) |0〉 → |e0〉m (|g〉n + |e0〉n) |0〉
→ |e0〉m |e0〉n|0〉 , (92)

|e0〉m |e0〉n|0〉 → |e0〉m (|g〉n + |e0〉n) |0〉 → |e0〉m (|g〉n − |e0〉n) |0〉
→ |e0〉m |g〉n|0〉 , (93)

where the phonon mode remains unchanged after the operation, as in the cavity
QED scheme for atom–atom entanglement studied in the previous chapter.

We thus succeeded to realize the CNOT gate, one of the cornerstones of quantum
computation. This type of gate is of primordial importance since it creates entan-
glement between two qubits. Together with single qubit operations, it forms a set of
universal gates [3] (see chapter “Quantum Algorithms”) – that is, with such set of
gates any quantum logic operation or algorithm can be implemented . . . even those
yet to be discovered.
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Quantum Cryptography

D. Bruß and T. Meyer

1 Introduction

The Greek words “kryptos” ≡ “hidden” and “logos” ≡ “word” are the etymological
sources for “cryptology,” the science of secure communication. Within cryptology,
one distinguishes cryptography (or “code-making”) and cryptanalysis (or “code-
breaking”). The aim of cryptography is to ensure secret or “secure” communication
between a sender, traditionally called Alice, and a receiver, called Bob. The encryp-
tion and decryption of a so-called plain text into a cipher text and back is achieved
using a certain key (not necessarily the same for Alice and Bob), as illustrated in
Fig. 1. Here, “secure” means that an eavesdropper, called Eve, has no information
on the message. In this chapter we will show that in classical cryptography (using
classical signals), security relies on the assumed difficulty to solve certain mathe-
matical tasks, whereas in quantum cryptography (using quantum signals), security
arises from the laws of quantum physics.
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Fig. 1 The principle of cryptography
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2 Classical Cryptography

2.1 Archaic Cryptosystems

Two old and simple concepts of classical cryptography are the transposition and the
substitution.

The transposition cipher uses a reordering of the letters in the message. As an
example, the word “TRIESTE” might get encoded into “TISERET.” This method
was implemented already in 500 B.C. by the Spartans, using a so-called Skytale: The
Skytale is a wooden rod, around which a strap of parchment or leather is wrapped.
The message is then written on the strap, each letter on a new twist. Unwrapping the
strap renders the message unreadable, and it can be transported safely to the receiver,
who owns a Skytale of the same diameter to decode the scrambled message.

The substitution cipher replaces each letter of the message alphabet with a new
one, possibly taken from a new alphabet. For instance, using the encoding A→B,
B→C, . . . , the message “TRIESTE” gets encoded into “USJFTUF.” This cipher,
employing a constant shift in the alphabet, is also called “Caesar cipher” as it was
used by the Roman general around 50 B.C. for communication with his commanders
on the field.

Both the transposition and the substitution cipher are very poor encryption meth-
ods, since they can be broken by a frequency analysis of the letters in the ciphertext:
In every language, some letters appear more frequently than others, and these fre-
quencies are preserved in the encoding. Thus, by counting the occurrences of all
different letters in the ciphertext, it is possible to “guess” the plaintext. Therefore,
these two simple cryptosystems are insecure.

2.2 The Vernam Cipher

The Vernam cipher was developed in 1926 [38]; it is a much more powerful cryp-
tosystem than the simple ciphers explained above. The main idea of Vernam was
to add a random secret key to the message. Explicitly, this works as follows: Each
letter of the plaintext alphabet is substituted by a number (say, from 1 to 26). Thus,
the message consists of numbers mi . For each i , a random number ki is chosen,
and the ciphertext is calculated as ci = mi ⊕ ki , where ⊕ denotes adding modulo
26. For the decryption, the receiver adds the same key and recovers the message, as
ci ⊕ ki = mi .

Two features of this method are important to note: First, the message and the
key need to have the same length, which might become a problem if large messages
are to be sent. Second, each key {ki } must only be used once. Otherwise, if two
messages {mi } and {m′

i } are encoded using the same key {ki }, yielding {ci } and
{c′i }, respectively, the XOR of the ciphertexts reveals information about the two
messages, since ci ⊕ c′i = mi ⊕m′

i . For this reason, the Vernam cipher is also called
one-time pad. Its great advantage is the fact that it is the only cryptosystem which
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can be proven to be perfectly secure [35], since the ciphertext yields no information
about the plaintext. However, this cryptosystem also has a drawback: Since for each
message a new key is needed, a large amount of random secret numbers have to be
distributed between all parties that wish to communicate.

2.3 RSA

The cryptosystems reviewed so far are symmetric, which means that the keys used
for encryption and decryption are identical, or at least the latter can be derived from
the former in a very simple way. In 1976, Diffie and Hellman [19] proposed the
use of one-way functions for constructing an asymmetric cryptosystem: It employs
two different keys, a public one, which is announced to everybody, and a private
one, which is kept secret. The ciphertext is computed from the plaintext by using a
one-way function (or more precisely: a trapdoor function), which can be evaluated
easily, but which is hard to invert. However, using some additional information (the
private key), the inversion is easy, such that the plaintext can be recovered from the
ciphertext by the owner of the private key.

This suggestion was utilized by Rivest, Shamir, and Adleman in 1978 [32]
who exploited the hardness of factoring large numbers. Their cryptosystem, which
became known as the RSA system, is still widely used in everyday life, although
there exists no rigorous proof of its security and, more severely, it is endangered by
the advent of the quantum computer (see chapter “Quantum Algorithms”, Sect. 6.2).

Explicitly, the RSA system works as follows: Choose two prime numbers p1 and
p2, and compute N = p1 p2. Let φ(N ) = (p1 − 1)(p2 − 1) be the Euler function
of N , and choose e such that 1 < e < φ(N ) and gcd(e, N ) = 1. (Note that finding
the greatest common divisor is easy, using the Euclid algorithm.) Finally, calculate
d such that ed = 1 mod φ(N ). The numbers N and e then form the public key,
whereas d is the private key. A message M gets encoded into C = Me mod N . As
aed = a mod N , the decoding is achieved by calculating Cd mod N = M . As an
example, take p1 = 11 and p2 = 13, thus N = 143 and φ(N ) = 10 × 12 = 120.
Choosing e = 23 (the public key, together with N = 143), we find d = 47 (the
private key).

3 Quantum Cryptography

In quantum cryptography, quantum states are used as information carriers. However,
in most cases the term “quantum cryptography” does not refer to quantum cryp-
tosystems, but, somewhat misleadingly, to establishing a random secret key using
quantum signals, i.e., implementing the Vernam cipher via quantum key distribution
(QKD). As described in the previous section, the Vernam cipher is provably secure
and thus provides an obvious candidate for a perfect cryptosystem, if the key dis-
tribution problem can be solved. Thus, in the following we focus on how Alice and
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Bob can create a common random secret bit string, employing the laws of quantum
mechanics. There are two different approaches to quantum key distribution: the first
possibility is to encode the classical bits in a set of non-orthogonal quantum states.
Here, single quantum states are prepared by Alice and measured by Bob, in order to
supply them with common random bits. Therefore this scheme is also referred to as
“prepare-and-measure” scheme. Non-orthogonal states cannot be distinguished per-
fectly, and together with the No-Cloning theorem (see below) this leads to the fact
that the adversary Eve cannot simply intercept and measure or clone the quantum
system underway from Alice to Bob. The protocol provides means to verify that
Eve has no (or only very limited) knowledge about the key. The so-called “BB84”
protocol (suggested in 1984 by Bennett and Brassard [3]), probably the most famous
quantum key distribution protocol, falls into the “prepare-and-measure” category.
Other examples are the B92 and the six-state protocol, see below.

The second possibility is to use entangled states that have been distributed
between Alice and Bob (“entanglement-based scheme”). This type of protocol is
named after A. Ekert [21]. If the entanglement is maximal, simultaneous measure-
ments of Alice and Bob will lead to perfectly correlated secret bits. Any interaction
of an eavesdropper necessarily destroys perfect entanglement. However, entangled
states are difficult to distribute and store without being affected by noise. We will
show later that these two approaches are, to a certain extent, equivalent.

3.1 The No-Cloning Theorem

The No-Cloning theorem, formulated in 1984 by Wootters and Zurek [39], is the
underlying fundamental concept that makes quantum key distribution secure. It is
based on the fact that the time-evolution of a closed quantum mechanical system
is described by a unitary transformation and that this transformation is linear. The
No-Cloning theorem states that perfect cloning of an unknown quantum system is
impossible. The proof of this theorem is simple (see chapter “Quantum Probability
and Quantum Information Theory”, Sect. 6.1):

Consider a unitary transformation U that copies the basis states |0〉 and |1〉 of a
two-level system perfectly, i.e.,

U |0〉|i〉 = |0〉|0〉, (1)

U |1〉|i〉 = |1〉|1〉, (2)

where |i〉 is some arbitrary initial state. The action of the linear transformation U on
an unknown state |ψ〉 = α|0〉 + β|1〉, with |α|2 + |β|2 = 1, is then already fixed by
its action on the basis and given by

U |ψ〉|i〉 = U (α|0〉 + β|1〉)|i〉,
= α|0〉|0〉 + β|1〉|1〉, (3)

�= |ψ〉|ψ〉.
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Thus, the unknown state |ψ〉 is not copied perfectly.
The No-Cloning theorem is a fundamental difference between classical and quan-

tum information theory. For the latter, it is both good and bad news: It prevents a spy
from copying quantum signals perfectly without disturbance, hence guaranteeing
the security of quantum cryptography. On the other hand, it makes it hard to develop
efficient error correction schemes and back-up methods for quantum computers.

3.2 The BB84 Protocol

The main idea of the BB84 protocol, introduced in 1984 by Bennett and Bras-
sard [3], is to generate a secret random key by employing two pairs of orthogonal
quantum states, where the classical bit values 0 and 1 are encoded into one pair at
a time. The quantum states of one of the pairs are non-orthogonal to the ones of
the other pair. Explicitly, the two pairs are the eigenstates of the Pauli operators σz

and σx and will be denoted by |0z〉, |1z〉 and |0x 〉, |1x 〉, respectively. They have the
properties that |〈ix | jz〉| = 1/

√
2, for all i, j ∈ {0, 1} and

|0x 〉 = |0z〉 + |1z〉√
2

= H |0z〉 , |1x 〉 = |0z〉 − |1z〉√
2

= H |1z〉 , (4)

where H is the Hadamard transformation, which, in the representation defined by
the orthonormal basis |0z〉, |1z〉, reads

H = 1√
2

(
1 1
1 −1

)
. (5)

Alice and Bob are connected via a quantum channel (see chapter “Quantum
Entropy and Information”, Sect. 2) which is totally insecure, i.e., it can be assumed
to be under full control of the eavesdropper. In addition, they have a classical chan-
nel that is public but authenticated (i.e., the identity of Alice and Bob is guaranteed
by sharing some previous secrecy), which means that Eve cannot send a message
via this channel feigning to be Alice or Bob.

The BB84 protocol works as follows (see also Table 1):

(i) Preparation. Alice prepares 2n qubits, each randomly in one of the four states
|0z〉, |0x 〉, |1z〉, or |1x 〉, and sends them along the quantum channel to Bob.

(ii) Measurement. For each qubit that Bob receives, he chooses at random one of
the two bases (z or x) and measures the qubit with respect to that basis.

(iii) Sifting. Alice tells Bob via the classical channel which basis she used for each
qubit. They keep the bits where Bob has used the same basis for his measure-
ment as Alice for the preparation. Those n bits are forming the so-called sifted
key.
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(iv) Parameter estimation. Alice and Bob choose a subset of the sifted key to esti-
mate the error rate. They do so by announcing publicly the bit values of the
subset. If they differ in “too many”1 cases, they abort the protocol.

(v) Establishing the secret key. Finally, Alice and Bob obtain a joint secret key
from the remaining bits by performing (classical) error correction and privacy
amplification [27].

Table 1 The BB84 key distribution protocol. Here, “Y” and “N” stand for “yes” and “no,” respec-
tively, and “R” means that Bob obtains a random result

Alice’s string 1 1 0 1 0 0 1 0 1 1 1 1 0 0
Alice’s basis + + + × × + × × × × + + + +
Bob’s basis + × + + × + × + × × + + + +
Bob’s string 1 R 0 R 0 0 1 R 1 1 1 1 0 0
Same basis? Y N Y N Y Y Y N Y Y Y Y Y Y
Bits to keep 1 0 0 0 1 1 1 1 1 0 0
Test Y N N Y N N N N Y Y N
Key 0 0 1 1 1 1 0

Error correction and privacy amplification are purely classical sub-protocols, and
we will only sketch their idea here: Error correction is used to eliminate errors in
the sifted key, which may originate from faulty devices, noise, and/or Eve’s tamper-
ing with the quantum signals. A simple error correction protocol works as follows:
Alice chooses two bits from the sifted key at random and tells Bob (via the classical
channel) the XOR value of the two bits. Bob tells Alice if he has the same value.
In this case, they keep the first bit and discard the second bit. If their values differ,
they discard both bits. The remaining bits form the key. Once Alice and Bob share
an identical bit string after the error correction, they have to decrease Eve’s knowl-
edge about these bits. This is achieved by privacy amplification, a simple exemplary
procedure of which works as follows: Alice and Bob agree on pairs of bits of the
(error-corrected) key and replace them by their XOR value. By doing so, they halve
the length of the key, but Eve has less information about this shorter key, even if she
knows the values of the single bits with high probability.

3.2.1 Simple Eavesdropping Strategies and Disturbance Versus
Information Gain

We will now sketch a simple eavesdropping strategy and see why the BB84 protocol
is secure. For a full characterization of eavesdropping strategies, see Sect. 4 and for
the rigorous proof of the security of BB84 against all these attacks, see Sect. 5.

The most simple and intuitive attack for Eve is to intercept and resend the 2n
qubits underway from Alice to Bob. Since Eve cannot copy them perfectly, as this is
forbidden by the No-Cloning theorem, an obvious strategy is to measure them. But

1 We elaborate in the next subsection on what “too many” exactly means.
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since she does not know the basis in which they were prepared (Alice announces
this information only after Bob received all signals), Eve can only guess or just flip
a coin for the selection of the measurement basis. In about half of the cases, i.e.,
for n qubits, she will happen to choose the same basis as Alice and get completely
correlated bit values. In the other half, her results will be random and uncorrelated.
Then Eve has to send the 2n qubits on to Bob, but as she does not know which
basis Alice has used, she prepares each qubit in the same basis that she used for
the measurement, i.e., only n of the newly created qubits match Alice’s bases. After
Bob receives Eve’s qubits, he measures them, and Alice and Bob apply the sifting
(step (iii)). Now, in n/2 cases Bob’s and Alice’s bases are the same, while Eve’s
basis differs. Since Bob’s result is random in those cases, his sifted key will be
wrong for n/4 bits, i.e., it will contain about 25% errors. In the parameter estima-
tion stage (step (iv)), if Alice and Bob obtain such a high error rate, they abort the
protocol.

This simple so-called “intercept-resend” strategy already shows that Eve neces-
sarily creates errors when she learns parts of the key. The following more general
(but not most general) eavesdropping method shows the trade-off between distur-
bance and information gain. Here, Eve uses an additional auxiliary system (ancilla)
and a unitary interaction. Let U denote the unitary operation employed by Eve,
acting on the qubit sent by Alice and the ancilla system |E〉 held by Eve. We first
consider the case where Eve does not disturb at all the qubits sent by Alice. The
action on two non-orthogonal states among the four states used in the BB84 protocol
is then given by

U |0z〉|E〉 = |0z〉|E0z 〉, (6)

U |1x 〉|E〉 = |1x 〉|E1x 〉, (7)

with a self-explaining notation for the output states of the ancilla system. Unitary
operations preserve the scalar product. The scalar products of the left- and right-
hand sides in Eqs. (6) and (7) are

〈0z |1x 〉〈E |E〉 = 〈0z |1x 〉〈E0z |E1x 〉, (8)

which means that |E0z 〉 and |E1x 〉 have to be identical, and therefore Eve can obtain
no information when measuring her ancilla.

We now look at the case where Eve’s attack does disturb the qubits sent by Alice:

U |0z〉|E〉 = |0′z〉|E0z 〉, (9)

U |1x 〉|E〉 = |1′x 〉|E1x 〉. (10)

Unitarity implies that

〈0z |1x 〉〈E |E〉 = 〈0′z |1′x 〉〈E0z |E1x 〉. (11)
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If Eve wants to obtain information about the states sent by Alice, she needs |E0z 〉 and
|E1x 〉 to be distinguishable. In order to increase the distinguishability of these two
states, their scalar product has to decrease. Due to Eq. (11), this implies that 〈0′z |1′x 〉
has to increase. These simple considerations show that the more information Eve
wants to obtain, the more disturbance of the signal she has to introduce.

3.3 The Ekert Protocol

The Ekert protocol, suggested by Ekert in 1991 [21], uses entanglement to create a
secret key for Alice and Bob. The idea is to distribute maximally entangled singlet
states (see chapter “Bipartite Quantum Entanglement”, Sect. 2)

|ψ−〉 = 1√
2
(|01〉 − |10〉) (12)

between Alice and Bob and to exploit the fact that a measurement of both qubits
in any basis yields correlated results. The remaining problem is how to distribute
the qubits such that one can be sure that an eavesdropper can get no (or only very
limited) information about the final key. This is done by checking a certain Bell
inequality, namely the CHSH inequality, as described further below (see also chapter
“Quantum Probability and Quantum Information Theory”, Sect. 2 and chapter “Pho-
tonic Realization of Quantum Information Protocols”, Sect. 2.1).

The Ekert protocol works as follows (see also Fig. 2):

π/4

4π /

π/4 π/4Alice

Bob

1
3

2

2

1
3

z

x

z

x

Fig. 2 Ekert protocol: Alice’s and Bob’s measurement directions (on the Bloch sphere)

(i) Entanglement distribution. Alice and Bob distribute a number of singlet states
|ψ−〉 among them, i.e., the first subsystem belongs to Alice and the second to
Bob.

(ii) Measurements. For each singlet, Alice and Bob measure an observable ran-
domly chosen from the sets {Ai } and {Bi }, respectively. These observables
are spin components, lying in the x–z plane of the Bloch sphere (see chapter
“Quantum Probability and Quantum Information Theory”, Sect. 4.3) and are
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given by Ai = cosφA
i σz + sinφA

i σx , Bi = cosφB
i σz + sinφB

i σx , and the
angles are φA

1 = 0, φA
2 = π/2, φA

3 = π/4 for Alice and φB
1 = 0, φB

2 = −π/4,
φB

3 = π/4 for Bob.
(iii) Announcement of bases. Alice and Bob announce the directions they chose for

each measurement. In the cases where the directions match, i.e., (A1, B1) and
(A3, B3), they get completely anti-correlated results, forming the sifted key by
inverting all bits for one party.

(iv) Bell inequality test. The results obtained when Alice and Bob measured in
the directions (A1, B3), (A1, B2), (A2, B3), and (A2, B2) are used to check an
CHSH inequality, as described below.

(v) Establishing the secret key. Finally, Alice and Bob obtain a joint secret key
from the sifted key by performing error correction and privacy amplification,
see above.

The CHSH inequality [15] is an upper bound on a sum of expectation values for
certain classical correlations. Consider four classical variables A1, A2, B2, and B3,
which can only take the values +1 or −1. It is easy to see that A1(B3 + B2) +
A2(B3 − B2) = ±2 for each assignment to the variables. Taking the average over
N assignments to these classical variables, one finds

|〈A1(B3 + B2)+ A2(B3 − B2)〉| ≤ 2 , (13)

where 〈Ai B j 〉 denotes the average
∑N
ν A(ν)i B(ν)j /N and A(ν)i is assignment number

ν to variable Ai . This can be rewritten as the CHSH inequality

S := |〈A1 B3〉 + 〈A1 B2〉 + 〈A2 B3〉 − 〈A2 B2〉| ≤ 2. (14)

Let us now consider A1, A2, B2, and B3 to be quantum mechanical observables
and denote the expectation values for their products as

〈Ai B j 〉 = Tr(Ai ⊗ B jρ). (15)

Using the measurement directions described in step (ii) of the Ekert protocol, the
sum of expectation values S as defined in Eq. (14), with respect to the singlet ρ =
|ψ−〉〈ψ−|, takes the value 2

√
2, a violation of the CHSH inequality. Whenever

Alice and Bob measure a value of S = 2
√

2, they can be sure to share a maximally
entangled state. In this case, Eve has no information on the key, since a maximally
entangled state between Alice and Bob cannot be entangled with anything under
Eve’s control [16]. On the other hand, if Alice and Bob obtain no violation of the
CHSH inequality, their measurement results are compatible with a separable state.
This means that it is impossible to create a secret key [1, 18].
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3.4 The B92 Protocol

Probably the most simple quantum key distribution protocol was suggested in 1992
by Bennett [2]: It uses two non-orthogonal states for encoding the bit values 0 and
1 and relies on the fact that non-orthogonal states cannot be cloned perfectly. The
B92 protocol works as follows:

(i) Preparation. Alice prepares qubits randomly in one of the two states |u〉 or |v〉,
with 〈u|v〉 �= 0, and sends them to Bob via the quantum channel.

(ii) Measurement. Bob tries to distinguish these states with a positive operator val-
ued measurement (POVM) [29], given by M = {E¬u, E¬v, E?}, where

E¬u = 1− |u〉〈u|
1+ |〈u|v〉| , (16)

E¬v = 1− |v〉〈v|
1+ |〈u|v〉| , (17)

E? = 1− E¬u − E¬v . (18)

(iii) Sifting. Alice and Bob discard all cases where Bob got an inconclusive result
(E?) and obtain the sifted key.

(iv) Parameter estimation. Alice and Bob choose a subset of the sifted key to esti-
mate the error rate. They do so by announcing publicly the bit values of the
subset. If they differ in too many cases, they abort the protocol.

(v) Establishing the secret key. Finally, Alice and Bob obtain a joint secret key
from the remaining bits by performing (classical) error correction and privacy
amplification.

3.5 The Six-State Protocol

The six-state protocol [7, 5] employs three pairs of orthogonal states (i.e., six states
in total), where the pairs are mutually non-orthogonal. This protocol is obtained
from the BB84 protocol by including a third encoding in the eigenstates of σy . Thus,
here one uses an encoding in three mutually unbiased bases of the two-dimensional
Hilbert space: {|0α〉, |1α〉}α∈{x,y,z}, with |〈iα| jβ〉| = 1/

√
2, for α �= β and for all

i, j ∈ {0, 1}.
The six-state protocol is similar to the BB84 protocol, with only minor modifica-

tions: Alice now chooses one out of three encodings. Thus, in the sifting procedure,
approximately 2/3 of the raw key gets discarded. The advantage of the six-state
protocol over the BB84 is that for a given disturbance of the eavesdropper, a higher
secret key rate can be extracted. Intuitively speaking, this is due to the fact that the
eavesdropper has less prior information, as the six states span the full Bloch sphere,
rather than only a great circle (which is spanned by the four states in BB84). We
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will give a more detailed analysis of the connection between disturbance and secret
key generation in Sect. 4.1.

3.6 Protocols with Higher-Dimensional Quantum States

All previously described quantum key distribution protocols use two-dimensional
quantum states. One can generalize QKD to higher dimensions, i.e., Alice dis-
tributes d-dimensional non-orthogonal quantum states (for d = 3, see [6]). Here,
Alice and Bob can, e.g., use two bases for a BB84-like protocol, and up to d + 1
mutually unbiased bases for a tomographically complete protocol (the generaliza-
tion of the six-state protocol). Mutually unbiased bases are defined via the overlap
|〈iα| jβ〉| = 1/

√
d, for α �= β and for all i, j ∈ {0, 1, ..., d − 1}. Here, the index α

denotes the basis, and i numbers the basis elements. Note, however, that the exis-
tence of d+1 mutually unbiased bases is only proven for d being a power of a prime
number.

What would be the advantage of a higher-dimensional protocol? It has been
shown [9, 12] that for a given disturbance the eavesdropper’s information on the
key decreases with increasing dimension, see Sect. 4.1.

4 Eavesdropping Strategies

Formally, the set of all possible eavesdropping strategies can be divided into three
classes: “individual,” “collective,” and “coherent” attacks. Individual attacks are
the simplest ones, corresponding to an eavesdropper with little power. Coherent
attacks are potentially the most powerful, assuming an eavesdropper with unlimited
technological power and resources, only being limited by the laws of nature. More
concretely, these classes of strategies are defined by how Eve interacts with the
quantum signals that are sent from Alice to Bob and how she processes the infor-
mation she gathers in this way. The most general way to describe how information
about a quantum system ρA is extracted is the following: Attach an ancilla system
in a predefined state |0〉〈0|E to ρA and perform a (sophisticated) unitary operation
U on the composite system ρA ⊗ |0〉〈0|E . Then do an (also sophisticated) measure-
ment on the ancilla system ρE := TrA(U †ρA ⊗ |0〉〈0|EU ). The measurement is
given by a POVM M = {M j } which yields outcome j with probability Tr(M jρ),
when measuring a state ρ. We denote the classical probability distribution which is
obtained in this way by PρM, i.e., PρM( j) = Tr(M jρ).

Consider the case where Alice sends n quantum systems ρ1
A, . . . , ρ

n
A to Bob.

An individual attack is an attack where Eve attaches an ancilla system |0〉〈0|E to
each state ρi

A, applies the same unitary operation U , and measures her part of all
the composite systems individually and in the same way. Collective attacks are a
little more general, as they allow the eavesdropper to measure all ancilla systems
collectively. The most general attack is the coherent attack, in which it is assumed
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that Eve attaches one large ancilla system to the state ρ1
A⊗· · ·⊗ρn

A and then performs
a global unitary transformation Ug and measurement. More formally, the probability
distribution that the eavesdropper obtains for each class of attacks is given by:

Individual: P
ρ1

E
M1 · · · P

ρn
E

M1 , ρ
i
E = TrA(U

†ρi
A ⊗ |0〉〈0|EU ), (19)

Collective: P
ρ1

E⊗···⊗ρn
E

Mn , ρi
E = TrA(U

†ρi
A ⊗ |0〉〈0|EU ), (20)

Coherent: PρE
Mn , ρE = TrA(U

†
g (ρ

1
A ⊗ · · · ⊗ ρn

A)⊗ |0〉〈0|EUg), (21)

where M1 and Mn denote POVMs on one and n systems, respectively.

4.1 Individual Attacks

Let us analyze the class of individual eavesdropping strategies. Since Eve is
restricted to the same interaction with each quantum signal sent from Alice to Bob,
all possible attacks can be easily parameterized for a given protocol. In this section,
we address the question of how much information the eavesdropper can gain about
any single signal, and which restriction on the secret key length this implies. An
important result that we will use in this context is a theorem derived in 1978 by
Csiszár and Körner [17]. Before stating the theorem, we introduce some definitions:
Let A be a random variable with range A and probability distribution PA. The Shan-
non entropy (see chapter “Classical Information Theory”, Sect. 1.2) of A is defined
as H(A) = −∑

a∈A PA(a) log PA(a). If not stated otherwise, we will use the log
to base 2. For two random variables A and B with joint probability distribution
PAB , the mutual information (see chapter “Classical Information Theory”, Sect. 1.2)
I (A : B) = H(A)− H(A|B), with H(A|B) = H(A, B)− H(B), is a measure of
the amount of information about B contained in A (and vice versa).

We denote by S(A : B||E) the length of the secret key that can be obtained for
two parties, each holding a random variable A and B, respectively, if the eavesdrop-
per holds a random variable E , for a given joint probability distribution PABE. The
Csiszár-Körner theorem [17] states that

S(A : B||E) ≥ max{I (A : B)− I (A : E), I (B : A)− I (B : E)}. (22)

This means that whenever Alice or Bob have an advantage over Eve in terms of in-
formation about the other party’s random variable, they can distill a secret key. Note
that this bound is not tight, i.e., there exist probability distributions for which the
right-hand side becomes negative, however, a secret key can be distilled. According
to the Csiszár–Körner theorem, whenever Eve’s maximal mutual information with
Alice is smaller than Bob’s, the trusted parties can establish a secret key. We will
therefore derive eavesdropping strategies that maximize Eve’s mutual information.

Let us define the most general individual attack that an eavesdropper can perform
on a qubit system, e.g., in the BB84 or six-state protocol: Since every qubit has to
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be attacked individually and in the same way, the only freedom is in the choice of
the unitary transformation. The most general transformation is given by

U |0〉|X〉 = √
F |0〉|A〉 + √

1− F |1〉|B〉, (23)

U |1〉|X〉 = √
F |1〉|C〉 + √

1− F |0〉|D〉, (24)

where {|0〉, |1〉} is the computational basis for Alice’s state, |X〉 is an arbitrary input
state of Eve’s ancilla, and F is the fidelity (see Chapter “Hilbert Space Methods
for Quantum Mechanics”, Sect. 3.3) of Bob’s state ρB with respect to the input
state |ψin〉 sent by Alice, i.e., F = 〈ψin|ρB |ψin〉. It is reasonable to assume that the
fidelity is the same for all employed bases (symmetric attack), because otherwise
Alice and Bob could detect Eve by comparing the fidelities for different bases. After
Eve’s attack, she and Bob measure their respective qubits in a randomly chosen basis
and obtain (after the sifting) random variables E and B, respectively. Alice’s random
variable A is determined by the probability that she chooses to send |0〉 or |1〉.

It can be shown [22] that for the BB84 protocol, the mutual informations with
respect to Alice and Bob and Alice and Eve, in terms of the disturbance D = 1− F ,
are given by

I (A : B) = 1+ D log D + (1− D) log(1− D), (25)

I (A : E) = 1

2
(1+ z) log(1+ z)+ 1

2
(1− z) log(1− z), (26)

where z = 2
√

D(1− D). The Csiszár-Körner bound (22) gives the maximal dis-
turbance D for which Alice and Bob can surely extract a secret key. The same
analysis can be done for the six-state protocol [7], leading to the same expression
for I (A : B), but a different one for I (A : E):

I (A : E) = 1+ (1− D)
[

f (D) log f (D)+ (1− f (D)) log(1− f (D))
]
, (27)

with f (D) = [1 + 1/(1 − D)
√

D(2− 3D)]. When comparing these mutual infor-
mations, see Fig. 3, we find that the threshold disturbance, up to which a secret key
can still be extracted, is higher for the six state than for the BB84 protocol, making
the former more robust against individual attacks.

As mentioned in Sect. 3.6, the six-state protocol can be generalized to d-dimen-
sional quantum systems, which are prepared by Alice in one of d + 1 mutually
unbiased bases. For such a protocol in d dimensions, one finds for the mutual infor-
mation [9]

I (A : B) = 1+ D logd
D

d − 1
+ (1− D) logd(1− D), (28)

I (A : E) = 1+ (1− D)
[

fd(D) logd fd(D)

+(1− fd(D)) logd
1− fd(D)

d − 1

]
, (29)
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Fig. 3 Comparison of Eve’s
mutual information for BB84
and the six-state protocol, as
a function of the disturbance

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

m
ut

. i
nf

.

D

I^AB
I^AE, six-states

I^AE,BB84

with fd(D) = d − 2D+√
(d − 2D)2 − d2(1− 2D)2/(d2(1− D)). One finds that

the threshold disturbance is higher for dimension d = 3 than for d = 2. Moreover,
the mutual information between Alice and Eve decreases as d increases, see Fig. 4.

4.2 Coherent Attacks

Coherent attacks are not only the most general ones but also the most difficult
ones to analyze, due to the high dimension of the global Hilbert space. Coherent
eavesdropping has been studied for BB84 [14] and for the six-state protocol [5].
As a somewhat surprising result, the authors found that coherent eavesdropping
does not increase Eve’s Shannon information, however, it does slightly increase the
probability to guess the key.

In many recent security analyses, a stronger security definition is employed
which also covers coherent attacks. We present this definition in detail in Sect. 5.2.

4.3 Eavesdropping Versus Cloning Strategies

As an explanation for the security of quantum cryptography, we have men-
tioned the impossibility of perfect cloning. However, it is possible to clone an
unknown state approximately, i.e., with a fidelity lower than 1. Approximate cloning
has been extensively studied in the literature; for an introduction and overview
see [10, 34].

An obvious eavesdropping strategy is to use the optimal (in terms of fidelity)
cloning transformation, to apply it to the state sent to Bob, to send him an imperfect
clone, and to measure the other imperfect clone. It turns out that for several protocols
the optimal (in terms of mutual information) eavesdropping strategy coincides with
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Fig. 4 (a) Comparison of Eve’s mutual information in the generalized six-state protocol for dimen-
sion d = 2 and d = 3, as a function of the disturbance. (b) Eve’s mutual information at fixed
disturbance D = 0.1, as a function of the dimension d

optimal cloning. However, in general this is not true (e.g., for B92), and a general
proof of the equivalence/non-equivalence for different protocols is still missing.

5 Unconditional Security of BB84

In the previous sections we have analyzed different eavesdropping strategies for var-
ious quantum key distribution protocols. An important question that remained open
is how secure these protocols are when no restrictions apply to the eavesdropper’s
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strategy. In this section we deal with this issue, the unconditional security, for the
BB84 protocol, following the ideas of Shor and Preskill [36]. The term “uncondi-
tional” means that the eavesdropper is only restricted by the laws of nature and in
particular is not limited by any resources such as computing time and/or memory.
(Therefore, one has to assume that the eavesdropper holds a quantum system until
the very end of the protocol.) A key is defined to be secure, if Eve has no “signifi-
cant” information about it, i.e., if the probability that Alice and Bob agree on a key
about which Eve has more than exponentially small information is exponentially
small.

The idea of the proof of the unconditional security of the BB84 protocol [36] is
to relate its security to entanglement purification and error correcting codes (CSS
codes). The proof is divided into three steps: The first step (Sect. 5.1) is to introduce
the “entanglement-based” version of the BB84 protocol, which is a reformulation
in which Alice does not prepare one of the four states, but rather measures her part
of a maximally entangled state that she shares with Bob. We show, after providing
a short introduction to classical and quantum error correction (in particular to CSS
codes), how Alice and Bob can distribute such a state over an insecure channel. In
the second step (Sect. 5.2) we show that the entanglement-based version is secure,
and in the third step (Sect. 5.3) we prove the equivalence between the entanglement-
based and the original “prepare-and-measure” version.

5.1 Entanglement-Based Version of BB84

The BB84 protocol can be recast into a form that is very similar to the Ekert proto-
col. The main idea is that Alice and Bob share a maximally entangled state

|φ+〉 = 1√
2
(|00〉 + |11〉) , (30)

which leads to perfect correlations when the parties measure in the same basis (cho-
sen from the two bases used in BB84). As this state is pure, it cannot be entangled
with anything else, and thus an eavesdropper cannot have any information about the
measurement results. Alice’s and Bob’s aim is consequently to distribute a number
m of |φ+〉 states,

|φ+〉⊗m = |φ+〉 ⊗ · · · ⊗ |φ+〉. (31)

Since Alice and Bob have to use an insecure quantum channel, they will not end
up with exactly this state, but rather with a mixed state due to noise or interaction
of Eve. The next step is thus to correct the errors that occurred during the transmis-
sion. Before we explain how this is achieved, we give a short introduction to error
correction.

5.1.1 Classical Error Correction

A classical linear [n, k] code C (encoding a k-bit string into an n-bit string, with
n > k) is a set of 2k codewords, where each codeword is a binary vector of length n.
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A linear code can be described by an (n × k)-dimensional generator matrix G that
maps each message a to the encoded message x = Ga. (Here, all arithmetic opera-
tions are modulo 2.) Thus, the set of codewords is spanned by the columns of G.

Error correction for linear codes can be described by means of a parity check
matrix H . This is an ((n − k) × n) matrix with the property that H x = 0 for
all codewords x . Error correction works as follows: the message a gets encoded
as x = Ga. If an error e occurs, x evolves to x ′ = x + e, i.e., the 1’s in the
vector e denote the erroneous bits. Applying the parity check matrix to x ′ leads to
H x ′ = H x + He = 0 + He = He, as H x = 0 for all codewords x . It follows
that H x ′ = He, which is called the (error) syndrome. If the syndrome is 0, no
error has occurred. Otherwise, H is constructed such that the syndrome contains
information about the error that allows to correct it. As an example, consider the
[3, 1] “repetition code” for 1-bit messages: It has two codewords, (0, 0, 0)T and
(1, 1, 1)T, for 0 and 1, respectively. Its generator matrix is the (3× 1) matrix

G =
⎛

⎝
1
1
1

⎞

⎠ , (32)

such that (0, 0, 0)T = G · (0) and (1, 1, 1)T = G · (1). To construct H , we choose
n − k = 3 − 1 = 2 linearly independent vectors orthogonal to the columns of G,
e.g., (1, 0, 1)T and (0, 1, 1)T. The rows of the parity check matrix are then given by
these vectors:

H =
(

1 0 1
0 1 1

)
. (33)

Denote by ei an error in the i th bit, e.g., e2 = (0, 1, 0)T. Then for all codewords x ,
we have H x ′ = H(x + ei ) = Hei and we find the syndromes

He1 =
(

1
0

)
, He2 =

(
0
1

)
, He3 =

(
1
1

)
, (34)

which makes it possible to read off the erroneous bit. This procedure is only suc-
cessful if one knows that an error has occurred for at most one bit. Therefore, this
repetition code only corrects one error.

In general, the properties of an error correcting code depend on the Hamming dis-
tance of the codewords. The Hamming distance of two binary vectors is the number
of positions in which the bit strings differ. If we assume that the error probability is
smaller than 1/2, the codeword x that minimizes the Hamming distance between x
and the erroneous x ′, is most likely the correct one. If all codewords of a code have
a Hamming distance of at least t , then 7t/28 errors can be corrected, where 7t/28
denotes the largest integer smaller than or equal to t/2.

Finally, we introduce the concept of duality: Let C be a linear [n, k] code with
generator matrix G and parity check matrix H . Then we can define the dual code
C⊥ of C , which is the set of all codewords that are orthogonal to each codeword



294 D. Bruß and T. Meyer

in C . The dual code C⊥ is an [n − k, n] code which is generated by HT and has
a parity check matrix GT. Dual codes play an important role in the construction of
CSS codes, as we will explain below.

5.1.2 Quantum Error Correction

In contrast to a classical bit, where only one type of error is possible (the bit flip), a
qubit can undergo three different errors: bit flips, phase errors, and combinations of
these two: A bit flip changes |0〉 into |1〉 and vice versa. Phase errors transform the
state |1〉 into −|1〉, but leave |0〉 unchanged. The combination of the two errors is
given by |0〉 → −|1〉 and |1〉 → |0〉. These three errors are generated by the Pauli
matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (35)

where σx corresponds to the bit flip, σz to a phase error, and σy to the combined
phase-bit-error.

A quantum error correction code that corrects bit and phase errors is a CSS
code, named after Calderbank, Steane, and Shor [11, 37]. This kind of code has
the important property that bit and phase flips are corrected independently, by using
a quantum version two classical linear codes. This will be described in more detail
in this subsection.

Definition 1 Let C1 and C2 be classical linear [n, k1] and [n, k2] codes, respectively,
such that C2 ⊂ C1. For each codeword x ∈ C1, define the quantum state

|x + C2〉 = 1√|C2|
∑

y∈C2

|x + y〉 , (36)

where |C2| denotes the cardinality of C2. The vector space spanned by {|x +
C2〉}x∈C1 defines a [n, k1 − k2] quantum code, a Calderbank–Shor–Steane code,
or CSS(C1,C2) for short.

It is important to realize that two different codewords x and x ′ in C1 may lead to
identical vectors |x + C2〉 = |x ′ + C2〉. This is the case iff x − x ′ ∈ C2, or in
other words, iff x and x ′ belong to the same coset of C1/C2.2 Otherwise, the states
|x + C2〉 and |x ′ + C2〉 are orthogonal. As the number of cosets of C2 in C1 is
|C1|/|C2|, the dimension of the space CSS(C1,C2) is |C1|/|C2| = 2k1−k2 , thus
m = k1 − k2 qubits can be encoded.

Error correction with CSS codes works as follows. Suppose that C1 and C⊥
2 both

can correct t errors. Moreover, let H1 be the parity check matrix for C1 and H2 that
of C⊥

2 . Define

2 Let G and H be two groups with G ⊂ H . Then for any h ∈ H , the coset of G in H , determined
by h, is defined as hG = {h + g : g ∈ G}. The set H/G is the set of all cosets of G in H .
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σ s
α = σ s1

α ⊗ σ s2
α ⊗ · · · ⊗ σ sn

α , (37)

where α ∈ {x, y, z}, σ 0
α = 1, and s = (s1, s2, . . . , sn) is an n bit vector. It can be

shown that the syndrome for bit flip errors can be computed by measuring σ s
z for

each row vector s of H1. Similarly, the syndrome for phase errors can be computed
by measuring σ r

x for each row vector r of H2. In this way, arbitrary errors on any t
qubits can be corrected. For more details, see [28]. An important property of CSS
codes is that error correction for phase errors and for bit flips is decoupled from each
other.

5.1.3 Entanglement-Based BB84: Step by Step

The last ingredient that we need is the Hadamard transformation (5), which maps
the basis {|0z〉, |1z〉} to the basis {|0x 〉, |1x 〉} and vice versa, i.e.,

H |0, 1z〉 = |0x 〉 ± |1x 〉√
2

= |0, 1x 〉 , H2 = 1 . (38)

We are now ready to describe the entanglement-based version of the BB84 protocol:

(i) Alice creates 2n qubit pairs in the state |φ+〉⊗2n .
(ii) She randomly selects n of those qubits which will later serve as check qubits

for the error estimation.
(iii) Alice selects a random 2n bit string b and applies the Hadamard transforma-

tion (5) to her half of each qubit pair whenever b is “1.”
(iv) She sends the other half of all qubit pairs to Bob.
(v) Alice announces b and which qubits are to serve as check qubits.

(vi) Bob performs a Hadamard transformation on those of his qubits where b
is “1.”

(vii) Alice and Bob measure the check qubits in the {|0z〉, |1z〉} basis to estimate
the error rate. If more than t results differ, they abort the protocol.

(viii) For the remaining qubits, Alice and Bob measure the syndromes for the codes
C1 and C2, correct the errors, and obtain |φ+〉⊗m .

(ix) They measure this state in the {|0z〉, |1z〉} basis to obtain a shared secret key.

Note that the application of the Hadamard transformation before and after the qubits
are sent through the quantum channel has the same effect as preparing and measur-
ing them in a rotational basis.

5.2 Security of the Entanglement-Based Version of BB84

In this section, we give a more precise argument why measuring |φ+〉 leads to a
secure key and how Alice and Bob can reliably estimate the error rate in their mea-
surement data.
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First of all, we need to provide a rigorous definition of what “security” means.
In the previous section about eavesdropping (Sect. 4) we used the mutual infor-
mation to quantify the knowledge Eve can have about the key. In their original
work [36], Shor and Preskill utilized exactly this security definition, which was
accepted to be accurate for a long time. However, it turned out [25] that this mea-
sure is not appropriate when one takes into account that the generated key is used in
another cryptographic application (e.g., a one-time pad) after the distribution pro-
tocol terminates. More concretely, it might happen that the mutual information (or
even the accessible information, which is the maximal mutual information opti-
mized with respect to all possible measurements) between Eve’s data and the key
is arbitrary small, yet, upon learning part of the key, Eve can recover the whole
key [25]. As a result of this complication, a new security definition was proposed
which was shown to provide the universal composability which the former definition
lacks [4, 30].

Before stating the security definition, we need to introduce some mathematical
framework in order to cover all possible eavesdropping strategies, in particular those
where the adversary keeps a quantum system (containing information about the
classical bit strings obtained by Alice and Bob upon measuring their quantum states)
until the very end of the protocol. Such a situation, where a quantum system is corre-
lated with classical data, can be described by the so-called classical-quantum states
(cq-states, for short): Let X be a random variable with range X and let {|x〉}x∈X
be some basis of a Hilbert space. Moreover, denote by ρx

E the state of the quantum
system E conditioned on the value x of the random variable X . Then the overall
system can be described by the cq-state

ρX E =
∑

x∈X
PX (x)|x〉〈x | ⊗ ρx

E . (39)

Using this formalism, we can describe all possible states at the end of the protocol:
Let S denote the set of all possible keys that can occur. The individual keys held
by Alice and Bob can be described by random variables SA and SB , respectively,
taking values sA and sB in S. The adversary holds a quantum system ρsAsB

E , which
is correlated with those variables, and thus the total system can be described by a
classical–classical–quantum (ccq) state:

ρSA SB E =
∑

sA,sB∈S
PSA,SB (sA, sB)|sA〉〈sA| ⊗ |sB〉〈sB | ⊗ ρsAsB

E . (40)

In the case of a perfect key, Alice’s and Bob’s random variables are identical and uni-
formly distributed, i.e., each possible key occurs with equal probability. Moreover,
the state of Eve’s quantum system is completely independent of the key. Thus, the
ideal ccq state is given by
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ρUU ⊗ ρE = 1

|S|
∑

s∈S
|s〉〈s| ⊗ |s〉〈s| ⊗ ρE . (41)

We are now ready to provide the definition of an unconditionally secure key:

Definition 2 Let ρSA SB E , as defined in (40), be the ccq state describing a classical
key pair (SA, SB) together with an adversary holding a quantum system E . Then
(SA, SB) is said to be ε-secure with respect to E if and only if

‖ρSA SB E − ρUU ⊗ ρE‖ ≤ ε, (42)

where ρUU ⊗ ρE is the ideal ccq state, defined in (41).

Here, ‖ρ − σ‖ = Tr|ρ − σ |/2 (with |M | = √
M† M) denotes the trace distance,

which is a proper distance measure in the space of hermitian operators. The above
definition of security (Definition 2) has the intuitive interpretation that except with
probability ε, the key pair (SA, SB) behaves as a perfect key, as described by (41).
Moreover, this definition guarantees that the key pair remains secure when used in
any cryptographic application.

We can now prove the unconditional security of the entanglement-based version
of the BB84 protocol. Recall that the aim of this protocol is to distribute the state
|φ+〉⊗n . Due to noise and/or Eve’s interaction, Alice and Bob will in general not
end up with exactly this state after the distribution; rather, they will hold a state ρAB ,
which is (hopefully) similar to |φ+〉⊗n . “Similarity” with a pure state is measured
by means of the so-called fidelity, which is defined as F(ρ, |ψ〉) = 〈ψ |ρ|ψ〉. If
F = 1, the two states are identical. Since we do not make any restrictions about the
eavesdropper’s strategy, we consider the worst case in which Eve holds a purifying
system of ρAB . This is the state ρE = TrAB |ΨABE〉〈ΨABE|, where |ΨABE〉 is a pure
state (in a higher-dimensional Hilbert space) such that ρAB = TrE |ΨABE〉〈ΨABE|.
This scenario corresponds to the case where the adversary has full control over the
quantum channel.

The following lemma relates the fidelity of ρAB to |φ+〉⊗n with the security of
the key that is obtained when measuring ρAB . The proof of this lemma can be found
in [25].

Lemma 1 Let ε ≥ 0 and ρAB be a bipartite quantum state such that

F(ρAB, |φ+〉⊗n) ≥
√

1− ε2. (43)

Then the n-bit strings obtained from measuring ρAB locally in the {|0〉, |1〉}-basis
are ε-secure, with respect to an adversary holding the purifying system of ρAB.

It remains to show how Alice and Bob can estimate this fidelity: Recall that Alice
sends the second qubit of the state |φ+〉 to Bob. During the transmission, this qubit
may undergo one of the three possible qubit errors introduced in Sect. 5.1 or remain
unchanged. Consequently, if a bit flip occurs, Alice and Bob will end up with the
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state |ψ+〉, if a phase flip occurs, they will end up with |φ−〉, and for both errors,
they will end up with |ψ−〉, where

|φ±〉 = 1√
2
(|00〉 ± |11〉) (44)

and

|ψ±〉 = 1√
2
(|01〉 ± |10〉) (45)

are the Bell states (here, we have dropped the index z for the computational basis).
In order to determine whether a bit flip occurred, Alice and Bob measure the POVM
{Pbf,1− Pbf}, where

Pbf = P|ψ+〉 + P|ψ−〉 = |01〉〈01| + |10〉〈10|, (46)

and for detecting phase errors, they measure {Ppe,1− Ppe}, where

Ppe = P|φ−〉 + P|ψ−〉 = 1

2
(1⊗ 1− σx ⊗ σx ), (47)

on a randomly chosen subset (say, half) of the signals. Note that these POVMs can
be implemented locally.

As Eqs. (46) and (47) correspond to measurements in one basis only (namely the
Bell basis), their outcomes obey the laws of classical probability theory. Therefore
we can apply the following lemma [28], which states that for a sufficiently large
bit string the errors of the check bits are representative for the errors of the key
bits:

Lemma 2 Let a random 2n bit string that might contain some errors and a random
subset of n check bits of that string be given. Then, for any two constants δ > 0 and
γ > 0, the probability of finding less than δn errors on the check bits, and more than
(δ + γ )n errors on the remaining bits is less than e−O(γ 2n), for sufficiently large n.

Using their estimates about the bit and phase errors, Alice and Bob can finally bound
the fidelity of their remaining qubits with respect to the state |φ+〉.

5.3 Equivalence of the Entanglement-Based
and Prepare-and-Measure Scheme of BB84

In this section, we show the equivalence of the original version of the BB84 proto-
col, as presented in Sect. 3.2, and the entanglement-based version, which has been
shown to be secure in the previous subsection. We do so by starting with the scheme
described in the end of Sect. 5.1 and successively modifying steps to finally arrive
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at the original version. The main ingredient that we are using are the CSS codes
introduced before.

First, we only look at the key qubits, i.e., the qubits that will form the key
when measured at the end of the protocol. Note that Alice and Bob ideally share
2n maximally entangled pairs, thus measuring one part of a pair leads to a perfect
correlation with the other part. Therefore, Alice can equivalently choose 2n random
bits, prepare 2n qubits in the corresponding states, and send them to Bob. Not so
obviously, Alice can measure the syndromes for the codes C1 and C2 already at the
beginning of the protocol, as we will see in the following:

Given a CSS code CSS(C1,C2), we can define a family of equivalent codes
CSSv,w(C1,C2), in the sense that they have the same error correcting properties.
The codewords of CSSv,w(C1,C2) are given by

|xk, v, w〉 = 1√|C2|
∑

y∈C2

(−1)v·y |xk + y + w〉, (48)

where xk is one representative of one of the m cosets of C2 in C1, and v and w are
arbitrary n bit strings. Since the states {|xk, v, w〉} form a basis, we can rewrite

|φ+〉⊗n = 1√
2n

2n−1∑

i=0

|i〉|i〉 = 1√
2n

∑

xk ,v,w

|xk, v, w〉|xk, v, w〉, (49)

where i is in binary notation. If now Alice measures the error syndromes, namely
σ s

z for each row vector s of H1 and σ r
x for each row vector r of H2, she obtains

a random result for v and w. Finally, if she does a last measurement in the
{|0〉, |1〉} basis, she obtains a random string xk ∈ C1/C2. From (49), we see
that after these three measurements, Bob’s state has collapsed onto |xk, v, w〉,
which is a random codeword of the randomly chosen code CSSv,w(C1,C2). Here,
v and w play the role of the phase and bit flip error correction information,
respectively.

Since at the end of the error correction, it is irrelevant whether Alice and Bob
obtain the state |φ+〉⊗n or |φ−〉⊗n (both yield correlated results), they do not need
to correct the phase errors, which means that Alice does not need to send the
corresponding error correction information v. If she does not reveal this value,
she effectively prepares a classical mixture of the states |xk, v, w〉 for all possible
values of v,

ρxk ,w =
1

2n

∑

v

|xk, v, w〉〈xk, v, w| = 1

|C2|
∑

z∈C2

|xk + z + w〉〈xk + z + w|. (50)

We see that this state can be equivalently prepared “classically” by choosing a ran-
dom codeword z ∈ C2, a random bit string w, and preparing the state |xk + z +w〉,
where xk is also chosen randomly, as derived above.
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Thus, Alice prepares the state |xk + z +w〉 and sends it to Bob. Bob will receive
an erroneous state |xk + z + w + e〉, where e is the bit string denoting the errors,
due channel noise or the adversary’s attack. When Bob measures this state in the
computational basis, he obtains xk + z + w + e. After learning the error correc-
tion information w, which is announced by Alice, he subtracts w from his string
and obtains xk + z + e. If e does not contain too many errors, xk + z + e can be
unambiguously corrected to xk + z.

This scheme becomes more simple when Alice instead of choosing xk ∈ C1/C2
chooses xk ∈ C1 (randomly), because then w is not needed anymore. Additionally,
xk + z then is a completely random bit string. With this modification, Alice now
simply sends the state |y〉, where y is a randomly chosen bit string, to Bob, instead
of sending |xk + z + w〉, and Bob receives |y + e〉. Instead of sending w as error
correction information, Alice now sends y − xk , which Bob subtracts from y + e
and corrects xk + e to xk .

What we have achieved now is that the key qubits are simply prepared in a ran-
dom state |y〉, in the same way as the check qubits. The modified protocol thus has
the following form:

(i) Alice creates 2n random qubits, each in the state |0〉 or |1〉, and a random
codeword xk ∈ C1.

(ii) She randomly selects n positions to be check qubits and the remaining n posi-
tions to define |y〉.

(iii) Alice selects a random 2n bit string b and applies the Hadamard transforma-
tion to her half of each qubit pair where b is “1.”

(iv) She sends the other half of all qubit pairs to Bob.
(v) Alice announces b and y − xk , and which qubits are to serve as check qubits.

(vi) Bob performs a Hadamard transformation on those of his qubits where b
is “1.”

(vii) Bob measures the check qubits in the {|0〉, |1〉} basis. If he finds more
than t results that disagree with Alice’s prepared state, they abort the
protocol.

(viii) Bob measures the key qubits to get y+e, subtracts y− xk , and corrects xk+e
to xk .

(ix) He calculates the coset to which xk belongs to get the key k.

Finally, we can remove the Hadamard transformations, i.e., Alice chooses ran-
domly one of the four states in {|0〉+, |1〉+, |0〉×, |1〉×} for each key and check qubit.
Then Bob, instead of waiting for b to be announced, simply chooses one basis at
random and measures the arriving qubits. As he will choose the wrong basis in
roughly half the cases, Alice should double the number of input qubits to 4n to have
approximately 2n qubits left. After Bob’s measurement, Alice announces which
basis she used and both discard all instances where they used a different basis. With
this last modification, we finally arrived at the prepare-and-measure version of the
BB84 protocol.
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6 Defense Against Eavesdropping with Photon Number
Splitting (PNS) Attacks

So far, we have considered idealized QKD protocols and eavesdropping therein.
However, realistic experimental implementations may offer Eve new and more pow-
erful paths. A dangerous eavesdropping strategy becomes obvious when looking at a
common experimental implementation for QKD: Qubit systems can be conveniently
represented by photons, typically using their polarization as degree of freedom. Ide-
ally each qubit is encoded by exactly one photon. But ideal single-photon sources
do not exist; therefore, one often uses weak coherent pulses,

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n! |n〉 , (51)

where α is a complex number, and |n〉 is a Fock state. When the phase argα is
unknown (or randomized), one arrives at the following mixture of Fock states:

ρ =
∫

d argα

2π
|α〉〈α| =

∞∑

n=0

P(n)|n〉〈n| , (52)

where the probability distribution of photons obeys Poissonian statistics,

P(n) = e−|α|2 |α|
2n

n! . (53)

Here, the mean photon number is n = |α|2. A “weak” laser pulse contains no photon
in most cases, and more than one photon only with a small probability. A typical
weak pulse used for QKD has a mean photon number n = 0.1. This corresponds to
“no photon” with probability∼90.5%, “one photon” with∼9%, and more than one
photon for ∼0.5%.

Any implementation that uses weak coherent pulses to simulate single photons
allows the following eavesdropping attack, which is called photon number splitting
(PNS) attack: For each pulse sent from Alice to Bob via a lossy fiber, Eve measures
its photon number (via a non-demolition measurement). If it is more than one, she
splits off one photon, stores it, and sends the remaining photons to Bob through
a lossless fiber. If the photon number is one, she blocks the event with a certain
probability (in order to maintain the photon statistics that Bob expects to receive)
and otherwise may eavesdrop. The vacuum events are simply forwarded to Bob.
Now, for all multi-photon events Eve can get full information on the corresponding
key bit, if she waits for Alice to announce the bases and then measures her stored
photons correspondingly. Thus the protocol looses unconditional security.

A strategy to counter this attack was proposed in [24, 26]: The idea is to introduce
a second source in Alice’s lab that emits weak coherent pulses with a different pho-
ton number distribution (the so-called decoy states); namely the decoy source has a
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much higher mean photon number, but does not differ from the signal source in any
other parameter like wavelength, etc. Alice sends decoy pulses to Bob at random, in
between the signal pulses. After the distribution of all pulses, she announces which
pulses were prepared by which source. If Eve launches the PNS attack described
above, then Bob will find an abnormally higher loss than expected for the pulses
that were prepared with a lower mean photon number, and thus Eve can be detected.

Another possibility to prevent PNS attacks was proposed by Scarani et al. [33]:
The so-called SARG protocol is a variant of the BB84 protocol, where the clas-
sical sifting is modified. Instead of announcing the basis in which the signal was
prepared, Alice announces a set of two states. This set consists of the signal state
and a random state from the second basis. For example, if Alice sent the state |0〉z
to Bob, she might announce {|0〉z, |0〉x }. Bob as usually measures in a randomly
chosen basis. In this example, if he measures σz , the result is inconclusive. Only
if he measures σx and obtains |1x 〉, which happens with probability 1/4, he knows
that Alice could not have sent |0x 〉, thus the state must be |0〉z . In this way, the
sifted key has only 1/4 of the length of the raw key, in contrast to 1/2 in the case of
the BB84 protocol. Although the efficiency is reduced, the security is increased, as
multi-photon events do not give Eve the full information. In [33] it has been shown
explicitly that for a number of eavesdropping strategies in an implementation with
weak coherent pulses, the information extractable by Eve is lower for the SARG
protocol than for the BB84 protocol, thus providing a higher security. Moreover,
when assuming a realistic channel model, it has been shown that the distance, up
to which a secure key can still be generated, becomes also larger for the SARG
protocol.

7 Classical Upper Bounds on the Secret Key Rate

It is possible to define a classical measure for the secret key rate at the level were
Alice, Bob, and Eve do not hold quantum system anymore, but have carried out their
measurements. This situation then can be described purely classically, by random
variables A, B, and E , held by the three protagonists, and which are correlated
according to a classical probability distribution PABE.

The easiest way to analyze the protocols introduced so far is by looking at
their so-called entanglement-based version (cf. Sec. 5.1): Consider a protocol in
which Alice prepares some signal states {|φi 〉} with probability pi and sends them
to Bob. This procedure can equivalently be described by preparing an entangled
state |ψeff〉AB = ∑

i
√

pi |i〉A|φi 〉B , where the second half is sent to Bob. At some
point, Alice measures her part of the state in the computational basis, obtains the
outcome i with probability pi and effectively prepares |φi 〉 at a distance. Bob does
the usual measurement defined in the original version of the protocol, for instance,
he measures σz or σx in the BB84 protocol. The state |ψeff〉AB is sometimes referred
to as “effective state” because it may be used as a concept of thought, in the way
explained above.
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A general eavesdropping attack can be described by Eve attaching a quantum
system to the state underway to Bob and performing an arbitrary unitary operation
on this composite system. The result is a tripartite state ρABE, where the system in
E is under Eve’s control. For simplicity, one usually assumes that the state ρABE is
pure and that the eavesdropper holds the purifying system ρE = TrABρABE. In order
to employ classical methods, one may now assume that each party measures his/her
part of the quantum state using some POVM, resulting in the classical variables
A, B, E , and probability distribution PABE. Note that this assumption potentially
limits the power of the eavesdropper, as she ultimately has the freedom to keep her
quantum system as long as she wishes.

We are now ready to define some classical measures of information, the secret
key rate, and bounds thereof.

Definition 3 Let A, B, and E be some random variables with joint probability distri-
bution PABE. Then the conditional mutual information between A and B, given E , is
defined as

I (A; B|E) =
∑

e∈E
PE (e) [H(A|e)+ H(B|e)− H(A, B|e)] . (54)

Here, the conditional Shannon entropy is defined as

H(X |e) = −
∑

x∈X
PX |E (x, e) log PX |E (x, e), (55)

and we denote by E and X the range of E and X , respectively. The conditional
mutual information I (A; B|E) quantifies the amount of information revealed about
A when one learns B, given the knowledge of E . The following definition incorpo-
rates the case where I (A; B|E) is minimized over all possible processings of the
variable E :

Definition 4 Let A, B, and E be some random variables with joint probability
distribution PABE. Then the intrinsic information between A and B, given E , is
defined as

I (A; B ↓ E) = inf
E→Ẽ

I (A; B|Ẽ), (56)

where the infimum is taken over all channels PẼ |E that can be used to process E .

The final two definitions quantify how many secret bits can be extracted from a
given probability distribution and how many are needed to create it.

Definition 5 Let A, B, and E be some random variables with joint probability dis-
tribution PABE. The secret key rate S(A : B‖E) is defined as the maximal amount
of secret bits that can be extracted asymptotically from PABE.

The secret key rate is thus a classical analogue of the distillable entanglement Ed
(see chapter “Bipartite Quantum Entanglement”, Sect. 3.1).
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Definition 6 Let A, B, and E be some random variables with joint probability distri-
bution PABE. The information of formation Iform(A; B|E) is defined as the minimal
number of secret bits that are needed asymptotically to create PABE.

The name “information of formation” might be misleading, as it is the classical
analogue of the entanglement cost Ec and not of the entanglement of formation (see
chapter “Bipartite Quantum Entanglement”, Quantum entropy and information).

Note that the security definition used here is purely classical. Roughly speaking,
it states that the keys extracted by Alice and Bob should be asymptotically equal
and uniformly distributed, whereas Eve’s conditional mutual information (given the
knowledge of all public communication between Alice and Bob) vanishes asymp-
totically. For a rigorous definition, see, e.g., [31].

Using these quantities, the following bounds of the secret key rate can be
derived [31]:

S(A; B‖E) ≤ I (A; B ↓ E) ≤ Iform(A; B|E) , (57)

i.e., the secret key rate is bounded from above by the intrinsic information, which is
always smaller than or equal to the information of formation.

Remember that we assumed that Eve measures her quantum system before Alice
and Bob proceed with the classical post-processing, which limits the validity of the
results presented in this section. Moreover, we considered a fixed measurement by
Eve, resulting in the classical variable E . A more general approach would be to look
for a POVM on Eve’s state that maximizes her accessible information [28].

8 The Role of Entanglement in QKD

Intuitively, the Ekert protocol and the entanglement-based version of the BB84 pro-
tocol suggest that entanglement is a vital requirement for quantum key distribution.
In fact, it has been shown by Curty et al. [18] and Acin et al. [1] that there exists
a deep relationship between the provable entanglement of the state shared by Alice
and Bob prior to their measurement and the secret key that can be extracted from
the resulting classical data.

8.1 Entanglement and Secret Correlations

In this section, we are investigating the following scenario: Let ρAB be an (effec-
tive) quantum state shared by Alice and Bob, and PAB the probability distribution
obtained when measuring some POVM {Ma} and {M ′

b} on Alice’s and Bob’s side,
respectively, i.e., PAB(a, b) = Tr(ρAB Ma ⊗ M ′

b).
It has been shown in [18] that entanglement is a precondition for the creation of

a secret key:
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Theorem 1 The correlations in PAB cannot lead to a secret key unless one can
show that ρAB via an entanglement witness W = ∑

a,b cab Ma ⊗ M ′
b, such that

Tr(Wσ) ≥ 0 for all separable states σ while Tr(WρAB) = ∑
a,b cab PAB(a, b) < 0.

Proof The proof uses the construction of entanglement witnesses (see chapter
“Bipartite Quantum Entanglement”, Sect. 3) and can be found in [18].
Note that it is crucial that the measurements {Ma} and {M ′

b} are chosen such that one
can construct an entanglement witness out of them. Starting with an entangled state
ρAB is not enough, since Alice and Bob may choose some unclever measurements
which do not make use of the quantum correlations in the state ρAB .

The following theorem [1] provides a necessary and sufficient criterion for the
existence of secret correlations (i.e. Iform(A; B|E) > 0), based on the possibility of
Alice and Bob to detect entanglement in their shared state:

Theorem 2 For all purifications |*〉ABE of ρAB and all possible measurements by
Eve compatible with PAB, it holds Iform(A; B|E) > 0 if and only if there exists no
separable state which could have produced PAB.

Proof The proof is also based on entanglement witnesses and can be found in [1].

8.2 Secure Key from Bound Entanglement

In the previous subsection we have shown that provable entanglement is a necessary
precondition for secret key generation. An interesting question arises here: does it
have to be free entanglement or may the entanglement also be bound (see chapter
“Bipartite Quantum Entanglement”, Sect. 3.1)?

Note that bound entanglement (i.e., no singlet states can be distilled from it) is
often considered “useless” for practical applications.

The question whether a secret key can be created from bound entanglement was
investigated by Horodecki et al. in [23], where the authors introduced the so-called
private states. The most general form of a private state γm , from which one can
create m bits of secret key, is given in the following theorem:

Theorem 3 The most general state shared by Alice and Bob, from which m bits of
secret key can be extracted, is given by

γm = U |ψ+2m 〉〈ψ+2m | ⊗ ρA′B′ U
†, (58)

where |ψ+2m 〉 = ∑2m−1
i=0 |i〉A|i〉B is the maximally entangled state in C2m ⊗ C2m

,
ρA′B′ is some additional state held by Alice and Bob, and

U =
2m−1∑

i, j=0

|i j〉AB〈i j | ⊗U A′B′
i j , (59)

with some unitary operation U A′B′
i j .
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Proof The proof can be found in [23].
The AB part of the state γm is called the “key part,” whereas the state ρA′B′ is called
the “shield,” since it shields the key from the eavesdropper, even if she holds the
purifying system of the state γm . A simple and intuitive example for the state γ1 is
given by

γ1 = p|φ+〉〈φ+| ⊗ ρs + (1− p)|φ−〉〈φ−| ⊗ ρa, (60)

where |φ±〉 = (|00〉±|11〉)/√2 and ρs and ρa are the projectors onto the symmetric
and anti-symmetric subspace of Cd ⊗Cd , respectively. Surprisingly, for any dimen-
sion d and p = (1+1/d)/2, one bit of secret key can be extracted from γ1, but it can
be shown that the distillable entanglement ED is bounded as ED ≤ log[(d + 1)/d].
Thus, for increasing d, the amount of distillable entanglement in γ1 decreases, and
in the limit d →∞ one finds for the distillable key rate K D 4 ED .

Theorem 3 motivates the following definition [23, 13] of the secret key rate when
quantum operations are performed on the state shared by Alice and Bob:

Definition 7 Let ρAB be a quantum state shared by Alice and Bob and let {Λn} be
a sequence of maps such that

Λn(ρ
⊗n
AB) = γ̃m, (61)

with

lim
n→∞‖γ̃m − γm‖ = 0. (62)

Then the distillable key rate of the state ρAB is given by

KD(ρAB) = sup
{Λn}

lim
n→∞

m

n
. (63)

It is possible to give an upper bound on KD(ρAB) in terms of the amount of
entanglement contained in ρAB [23]. The appropriate entanglement measure (see
e.g. reference [8]) is an asymptotic version of the relative entropy of entanglement

Er(ρ) = inf
σ∈S

Tr[ρ(ln ρ − ln σ)], (64)

where S denotes the set of separable states.

Theorem 4 Let E∞
r (ρ) = limn→∞ Er(ρ

⊗n)/n be the regularized relative entropy
of entanglement. Then

Kd(ρAB) ≤ E∞
r (ρAB). (65)

Proof The proof can be found in [23].
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Apart from the inequality stated in the above theorem, more relations between entan-
glement measures and the distillable secret key rate are known. In general, we have
that

ED ≤ KD ≤ E∞
r ≤ Ec, (66)

where Ec is the entanglement cost. Note that it is possible to have strict inequalities,
i.e., there exist examples in which

ED < KD < Ec. (67)

In particular, one can have K D > 0 even for bound entangled states.
In this last section we have shown that secret key distillation and entanglement

distillation exhibit certain common features, but are not fully equivalent. Remark-
ably, concepts and methods developed in quantum information theory have been
employed as new tools to address problems in classical information theory, thus
emphasizing the close interplay between classical and quantum information science.

9 Problems/Exercises

(1) Using the measurement directions of the Ekert protocol, show that the CHSH
inequality is violated when Alice and Bob share a singlet. Adding white noise
to the projector onto the singlet, what is the maximal proportion of noise that
still leads to a violation of the CHSH inequality?

(2) Derive Eve’s maximal mutual information for the BB84 protocol, see Eq. (26).
Start from the general ansatz in Eqs. (23) and (24) and use symmetry of the
attack, i.e., equality of the fidelity in the two bases.

(3) Show that the state |φ+〉 in Eq. (30) is form invariant in the Hadamard-rotated
basis (eigenbasis of σx ).

(4) Using the definition in Eq. (36), show that |x + C2〉 = |x ′ + C2〉 if and only if
x − x ′ ∈ C2.

(5) Consider the following probability distribution, which arises from measuring a
certain bound entangled state [20] in the computational basis. Show that this

A B E PABE

0 0 0 1/6
0 0 1 1/6
0 1 0 1/6
1 0 1 1/6
1 1 0 1/6
1 1 1 1/6

distribution has positive intrinsic information, I (A; B ↓ E) > 0. Hint: Show
that for all channels E → Ẽ one has I (A; B|Ẽ) > 0. It suffices to consider
only alphabets of Ẽ not larger than the size of E .
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Quantum Algorithms

J. Kempe and T. Vidick

The idea to put computing machines on a physical footing and to use the laws of
physics as the basis of a computer already dates back several decades. In the 1980s,
Feynman [24, 25] was the first to consider quantum mechanics from a computational
point of view by observing that the simulation of quantum mechanical systems on
a classical computer seemed to require an increase in complexity exponential in the
size of the system. He asked whether this exponential overhead was inevitable, and
if it was possible to design a universal quantum computer, which could simulate any
quantum system without the exponential overhead. In 1985 Deutsch [17] defined the
model of the quantum Turing machine, generalizing the classical Turing machine to
follow the laws of quantum mechanics. Yao later showed that it was equivalent to
the quantum circuit model, also defined by Deutsch.

Deutsch was the first to exhibit a concrete (albeit artificial) computational task
which admitted a quantum algorithm strictly more efficient than the best classical
algorithm solving the same problem (see Sect. 3). Although this algorithm seems
rather simple (it involves only two quantum bits - qubits), it carries the main ingre-
dients of later quantum algorithms and is a nice toy model for understanding why
and how quantum algorithms work.

The most striking demonstration of the computational power of quantum com-
puters was given by Shor in 1994 [44], who exhibited efficient quantum algorithms
for factoring and the discrete logarithm. There are no known efficient classical algo-
rithms for these problems, and in fact the security of many cryptographic systems
(such as some primitives for secure authentication over the internet like RSA) rely
on their supposed hardness. Shor thus demonstrated that, should a quantum com-
puter be built, most current encryption schemes will be broken immediately.

We begin this chapter by describing some useful notations in Sect. 1. We then
describe the quantum circuit model of computation, introduced by Deutsch, in
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Sect. 2. In Sect. 3 we give a detailed account of Deutsch’s algorithm. We then out-
line the quantum Fourier Transform (Sect. 4), which is a crucial ingredient in many
quantum algorithms. As applications, we describe the algorithms of Deutsch–Josza
and Simon in Sect. 5 and give in detail Shor’s algorithm for factoring in Sect. 6.
These algorithms can be seen as special cases of a more general problem, called
the Hidden Subgroup Problem, which we present in Sect. 7. In Sect. 8 we give the
details of another notable quantum algorithm: Grover’s 1996 algorithm for unstruc-
tured search. We finally end this chapter by giving an overview of new algorithms
and algorithmic techniques in Sect. 9.

Those who are interested to know more will find detailed expositions of the clas-
sic quantum algorithms in the literature (in particular [39, 34]) and of more recent
developments in the reference list.

1 Notations

In this chapter we will make use of the following conventions and notations:
A bit b is either 0 or 1, i.e., b ∈ {0, 1}. An n-bit string is a sequence of n bits,

i.e., it is an element of {0, 1}n . We often work in arithmetic over the 2-element field
G F(2). In this case we denote addition by ⊕: 0⊕ 0 = 1⊕ 1 = 0 and 0⊕ 1 = 1⊕
0 = 1, this is just addition mod 2. We will also use ⊕ to denote bit-wise addition
of bit strings mod 2, e.g., 10 ⊕ 11 = 01. For multiplication of 2 bits b1 and b2 we
will write either b1b2 or b1 · b2. The inner product of 2 bit strings of same length n
will also be denoted by “·” and is defined for x = x1x2 . . . xn and y = y1 y2 . . . yn

as x · y = x1 y1 + x2 y2 + . . . + xn yn mod 2. We also require a little bit of group
theory. A group G is a set of elements with a binary operation defined on them,
often denoted by “+,” which is associative, has an identity element and is such that
every element in G has an inverse for this operation. The group is called Abelian
if for all elements g, h ∈ G we have g + h = h + g. An example of a family of
Abelian groups are the cyclic groups of M elements, denoted as ZM . The elements
are ZM = {0, 1, . . . ,M − 1} and the group operation is simply addition modulo M .
The simplest such group is the group (Z2,⊕): its elements satisfy 0⊕0 = 1⊕1 = 0
and 0⊕ 1 = 1⊕ 0 = 1.

A qubit is a two-dimensional quantum system. We will denote the two basis
states by |0〉 and |1〉. The state of several qubits is spanned by the tensor product
of individual qubits. If the first qubit is in the state |φ〉 and the second qubit is
in the state |ψ〉, then we will write the state of the joint system of two qubits as
|φ〉 ⊗ |ψ〉. In case there is no ambiguity we will omit the tensor product ⊗. The
tensor product space of n qubits is spanned by the 2n states |00 . . . 00〉, |00 . . . 01〉,
. . . , |11 . . . 11〉. These states are also called computational basis states, as they
correspond to the classical configurations of n bits. A measurement in the computa-
tional basis projects onto these basis states. Its outcomes are hence described by an
n-bit string. If the system is in a state |φ〉, then the probability that a measurement
in the computational basis gives a bit string x is given by the inner product squared
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|〈x |φ〉|2. Sometimes we will only perform a partial measurement on a state. This
means we only measure a subset of the qubits in the computational basis. The state
collapses to a state that is consistent with the measurement we have performed.
For instance if we have the state 1√

3
|00〉 + 1√

3
|01〉 + 1√

3
|11〉 and we measure the

second qubit in the computational basis, then the state of the first qubit will be |0〉
if the outcome is 0 (which happens with probability 1

3 ) and 1√
2
(|0〉 + |1〉) if we

get outcome 1 (with probability 2
3 ). This becomes more obvious if we rewrite the

state as

1√
3
|00〉 +

√
2√
3

|0〉 + |1〉√
2

⊗ |1〉. (1)

To analyze the algorithms that follow, we will need some standard notation to
describe the asymptotic behavior of such functions as the running time of an algo-
rithm as a function of the input size. We will use the following:

• f = O(g) ( f is “big-O” of g) if there exist positive constants C and k such that
| f (x)| ≤ C |g(x)| for all x > k.

• f = Ω(g) ( f is “big-Omega” of g) if there exist positive constants C and k such
that |g(x)| ≤ C | f (x)| for all x > k.

• f = Θ(g) ( f is “big-Theta” of g) if there exist positive constants C1,C2, and k
such that C1|g(x)| ≤ | f (x)| ≤ C2|g(x)| for all x > k.

In complexity theory problems are often classified according to the resources
required by the best algorithm that solves them. Here the notion of efficiently solv-
able is used. An algorithm is considered efficient if the resources it uses (time and
space) scale like a polynomial in the number of input bits. In other words, if the
input can be described by n bits, then an algorithm is efficient if its resources scale
as O(nα) for some constant α, which means that there exists some polynomial in n
that bounds the amount of resources used. This gives rise to the complexity class P,
which is the class of problems for which there is an efficient algorithm (note that if
the algorithm runs in time polynomial in n, it also uses only polynomial space, as it
takes at least a unit of time to use a unit of memory). Another widely used complex-
ity class is the class NP. Problems in this class are such that, given a solution to the
problem, there is an algorithm that can efficiently verify if this solution is correct.
However, in general these problems are not known to have an efficient algorithm that
finds the solution. In particular we have P ⊆ NP and it is a famous open question
whether P �= NP. Equality of these classes would imply that it is as easy to find
a solution to a problem as it is to verify a candidate solution that has been given.
One important property of the class NP is that it contains complete problems. A
problem is NP-complete if any other problem in NP can be reduced to it, whereby a
reduction from a problem A to a problem B we mean a polynomial-time algorithm
which, given access to solutions of problem B, can solve problem A efficiently.
Many of the hardest algorithmic problems, like constraint satisfaction problems, or
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the traveling salesman problem are NP-complete and finding an efficient algorithm
to one of them would allow to solve all problems in NP efficiently.

2 The Quantum Circuit Model

A classical computer can be described by a circuit. The input is a string of bits
({0, 1}n). The input is processed by a succession of logical gates like NOT, OR,
AND, or NAND, which transforms the input to the output. In general the output bits
are Boolean functions f : {0, 1}n → {0, 1} of the input bits. A schematic view is
depicted in Fig. 1.

The way Feynman put it, a quantum computer is a machine that obeys the laws
of quantum mechanics, rather than Newtonian classical physics. In the context of
computation this has two important consequences, which define the two aspects in
which a quantum computer differs from its classical counterpart. First, the states
describing the machine in time are quantum mechanical wave functions. Each basic
unit of computation – the qubit – can be thought of as a two-dimensional complex
vector of norm 1 in some Hilbert space with basis |0〉 and |1〉. We can think of the
basis states as corresponding to the states of a classical bit, 0 and 1. And second,
the dynamics that governs the evolution of the state in time is unitary, i.e., described
by a unitary matrix that transforms the state at a certain time to the state at some
later time. A second dynamical ingredient is the measurement. In quantum mechan-
ics observing the system changes it. In the more restricted setting of a quantum
algorithm a measurement can be thought of as a projection on the basis states.

With these notions in place, we can describe a general quantum circuit. In the
beginning the qubits are initialized to some known classical state (a basis state of
|0〉 and |1〉, also called the computational basis), like for instance |00 . . . 0〉. Then
a unitary transformation U is performed on the qubits. In the end the qubits are
measured in the computational basis and the result is processed classically. The
general setting can be seen in Fig. 2.

Given this model, it is not even clear if such a quantum computer is able to
perform classical computations. After all, a unitary matrix is invertible and hence
a quantum computation is necessarily reversible. Classical computation given by
some circuit with elementary gates, like the AND and NOT gates, is not reversible,

1

0

1

0
.
.
.

1  output

Fig. 1 Schematic representation of a classical circuit computing a Boolean one-bit function
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U

0
0

0

0
... ...

measure

Fig. 2 A general quantum circuit consisting of three steps: initialization of the qubits, unitary
transformation, and measurement in the computational basis

let alone because a gate like the AND gate has two inputs and only one output.
However, the question of reversibility of classical computation has been studied in
the context of energy dissipation by Bennett in the 1970s [9] (see also (Toffoli,
1980, Automata, Languages and Programming, unpublished)), who established that
classical computation can be made reversible with only a polynomial overhead in
the number of bits and gates used.

2.1 Universal Reversible Classical Computation

One way to make classical computation reversible is to simulate any classical circuit
with AND and NOT operations by a circuit consisting entirely of what is called a
Toffoli gate, which acts as depicted in Fig. 3.

When viewed as a matrix over the eight basis states 000, 001, 010, 011, 100, 101,
110, 111 the Toffoli gate acts as

T =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

Clearly, the Toffoli gate is reversible (it is its own inverse and implements a permu-
tation of the 8 bit strings). Note also that this gate is unitary.

a

b

c

a

+

b

c ⊕ ab

Fig. 3 The Toffoli gate flips the last bit if the first two bits are in the state 11
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1
a

0

1

+

a

a

a

b

1

a

+
b

1 ⊕ ab

input
output

input

output

b) NANDa) FANOUT

}

}

Fig. 4 Implementing the FANOUT (a) and the NAND gate (b) with the Toffoli gate

To show how a circuit consisting of Toffoli gates can simulate any classical
circuit we will assume here that the classical circuit is made of NAND gates and
FANOUT gates. It is known (and not hard to show) that any Boolean function can
be computed by a circuit of NAND and FANOUT gates. The FANOUT gate simply
copies 1 bit into 2 bits. The NAND gate outputs 0 if and only if both input bits are 1;
otherwise it outputs 1. In other words, it acts as NAND (a, b) = 1 ⊕ ab. Figure 4
shows how the Toffoli gate can implement the FANOUT and the NAND gate with
some extra ancillary bits. Replacing every occurrence of a FANOUT or a NAND
gate in a circuit by the corresponding Toffoli gate supplemented with ancillary bits,
we can simulate the whole circuit in a reversible fashion. Since classical reversible
computation is just a permutation on the bit strings of its input, it is in particular
unitary.

As a result, quantum computation is at least as strong as classical computation.
To implement a classical subroutine with a quantum machine, all one has to do is to
make the classical circuit reversible (using, e.g., Toffoli gates and auxiliary qubits)
and implement the Toffoli gates via quantum gates.

Some care has to be taken with the ancilla qubits when a classical computation
is made reversible and then used as part of a quantum circuit. Since the input to
the circuit can now be a quantum state, it is important to make sure that the state
of the ancilla qubits at the end of the computation does not depend on the input
to the circuit: if it did, any interference effect (constructive or destructive) that we
would like to use in the algorithm would be prevented by the ancilla qubits. This
can be dealt with by copying the result of the computation onto some clean bits
and then undoing any operation on the ancilla qubits, a procedure usually referred
to as garbage removal. See Exercise 1 for one effect quantum states can have with
classical gates.

The next important question is whether it is possible to build a universal quantum
machine (rather than special purpose computers). In other words, is there a small
set of operations that implements any unitary transformation? Classically, it is well
known that any Boolean function can be computed with a small set of universal
gates, like AND and NOT, or NAND, as we have seen above. Moreover each of the
elementary gates in a classical circuit only operates on few (1 or 2) bits at a time.
Fortunately, it turns out that a similar statement is true for the quantum world; it was
shown [18, 20] that there are sets of universal quantum gates on at most 2 qubits. In
particular it has been shown that any unitary transformation can be decomposed into
a sequence of gates consisting of one-qubit gates and CNOTs. We can describe the
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a〉

b〉 + a ⊕ b〉

a〉

⏐

⏐⏐

⏐

Fig. 5 The CNOT gate flips the second qubit if the first qubit is in the state |1〉

action of the CNOT gate by showing how it transforms the basis states |00〉, |01〉,
|10〉, and |11〉: see Fig. 5.

However, the set of gates consisting of CNOT and single qubit gates is a contin-
uous gate set. Sometimes, in particular in the context of fault-tolerant computation,
it is convenient to work with a small finite set of universal gates. One such universal

gate set is the set of three gates
{
π
8 , H,CNOT

}
, where

π

8
=

(
e
− iπ

8 0

0 e
iπ
8

)
, H = 1√

2

(
1 1
1 −1

)
(3)

π
8 is a gate that multiplies the basis state |1〉 with ei π4 (up to a global, unobservable
phase), the Hadamard gate H maps |0〉 → 1√

2
(|0〉 + |1〉) and |1〉 → 1√

2
(|0〉 − |1〉)

and the controlled-NOT gate (CNOT) is as defined above. This gate set is univer-
sal in the sense that any unitary transformation can be approximated to arbitrary
precision by a sequence of gates from this set.

Exercise 1 (Inverted CNOT) Study the following mini two-qubit quantum circuit:
apply a Hadamard transform on each of the two qubits, then apply a CNOT as in
Fig. 5 followed by another Hadamard on each of the qubits. What is the resulting
action of this circuit? (Hint: This circuit has an equivalent description with just
one two-qubit gate.) This little circuit illustrates how a classical gate can change
behavior unexpectedly when given a quantum superposition as input (the state after
the first two Hadamard transforms).

Exercise 2 (n-fold Controlled Operations) Let V be a one-qubit gate. Let C(V ) be
the two-qubit gate that implements V on the second qubit if the first qubit is in the
state |1〉. For instance C N OT = C(X), where X is the one-qubit gate that flips
a bit, i.e., X |0〉 = |1〉 and X |1〉 = |0〉. Let C2(V ) be the three-qubit gate that
implements V on the third qubit if the first two qubits are in the state |11〉. For
instance Toffoli = C2(X). Similarly one can define C3(V ), C4(V ) and so on.

1. Find the matrix representations for C(V ) and C2(V ) from the one of V .
2. Show how to implement Cn(X) using 2n − 3 Toffoli gates (make sure that any

ancilla qubits used are returned to their initial state).
3. Let R′ = Cn−1(Z), where Z is the one-qubit unitary that flips the sign of |1〉

and leaves |0〉 invariant, i.e., Z |0〉 = |0〉 and Z |1〉 = −|1〉. Find a circuit with
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elementary (or small) gates to implement R′. Define R to be the transformation
on n qubits that flips the sign of all basis states except for the state |0〉⊗n, which
is left invariant. Build R from R′.

It turns out that there are many other choices of finite universal gate sets acting
on few qubits only. In principle the complexity of a unitary transformation, when
counted as the number of elementary gates needed to implement it, might depend
on the choice of universal gate set. However, Solovay and Kitaev have shown (see
e.g. [39]) that all finite universal gate sets are equivalent in the sense that if we
can approximate an n-qubit unitary with poly(n) gates from one set, we can also
approximate it with poly(n) gates from the other. This means that the notion of an
efficient algorithm does not depend on the particular choice of gate set.

When we wish to solve a problem (like factor a large number) we are often
content with a circuit that solves the problem with some probability p, which is not
too small (i.e., constant). If we have such a circuit and we can verify rapidly if the
circuit gave the correct answer (e.g., in the case of factoring we just need to check
if the numbers that are output are indeed factors of our original number), we can
repeat it several times to boost the success probability. Repeating the circuit r times
boosts the success probability up to 1 − (1 − p)r which is exponentially close to 1
if r = n.

In complexity theoretic terms, a problem that can be solved by a quantum circuit
with poly(n) elementary gates (from some fixed universal gate set) with high prob-
ability (e.g., constant), where n is size of the input, is said to be in the complexity
class B Q P (which stands for bounded quantum polynomial time).

3 First Algorithms

The first truly quantum algorithm was proposed by Deutsch [17]. Albeit quite sim-
ple, it contains in essence most of the future developments of quantum algorithms.
Deutsch’s algorithm provides an improvement over the best classical algorithm solv-
ing the same problem in terms of its black-box or query complexity, which is defined
below, and will be one of the complexity measures that we use in comparing the
performance of different algorithms.

3.1 The Black-Box Model

Suppose we are given a function f : {0, 1}n → {0, 1}m , and we want to obtain
some information about f . For example, we might want to compute a specific value
f (x), or find out whether f ever takes the value y ∈ {0, 1}m , or if f is a constant
function, etc. The complexity of these tasks will depend on the format in which f is
given to us: is it given by a table of values, or by some little program computing f,
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Uf

x〉⏐ ⏐

y〉⏐

x〉

⏐y ⊕f (x)〉

Fig. 6 The gate Uf

or by characterizing it in some mathematical way (e.g., as the solution of an implicit
equation)?

To abstract away any special features that f might have, we place ourselves in
the black-box, or oracle, model of computation. In this model, f is given as a special
gate that we can use in our circuit. This gate basically takes an input x ∈ {0, 1}n and
outputs f (x). However, such a transformation is not reversible (consider for instance
the all-0 function). To make it reversible, and thus implementable as a quantum
circuit, we introduce another input y ∈ {0, 1}m . The box Uf outputs x and f (x) ⊕
y (see Fig. 6). Uf is then a permutation of all (n + m)-bit strings, and therefore
reversible.

Exercise 3 What is the inverse of Uf ? Suppose f is invertible with inverse f −1. Is
Uf −1 the inverse of Uf ?

In the black-box model, the complexity of a given circuit is the number of gates
Uf that it uses. The reasoning behind this is that in general it is expensive in terms of
resources to apply Uf and so we focus on counting these applications. We will not
count other gates, such as the CNOT or Hadamard gates, however, we will still be
careful to use as few as possible of these gates (since later in the context of factoring
we will replace the black-box by an actual function that we evaluate in a subroutine
and we will count all the gates in the circuit). The query complexity of an algorithm
computing some information on a function f given as a black-box (Uf ) will thus be
given by the minimal number of evaluations of (queries to) f (Uf ) that it needs to
perform its task, in the worst case.

3.2 Deutsch’s Algorithm

Deutsch was the first to exploit the unique features of quantum computation to
devise a quantum algorithm that had a strictly lower query complexity than the best
classical deterministic algorithm. The problem he considered is the following:

Input: A Boolean function f : {0, 1} → {0, 1} (given as a black-box).
Output: Constant (if f (0) = f (1)) or balanced (if f (0) �= f (1)).
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H

Uf

H

Fig. 7 The transformation Df

Any classical deterministic algorithm for this problem needs at least two queries
to f , since it needs both f (0) and f (1) to decide whether f is constant or balanced.
Deutsch showed how this problem could be solved by a quantum circuit using only
one query to f . The main idea is that, since we are interested in a global property
of the function f , we might be able to get sufficient information by querying f
in superposition and measuring the resulting quantum state in order to gather rele-
vant information on f . Toward this aim, Deutsch introduced the following unitary
transformation Df that uses only one unitary Uf and two Hadamard gates.

What is the effect of Df when applied on a basis state? Suppose, for example,
that we start in the |0〉 ⊗ |0〉 state. We first apply a Hadamard transformation to the
first qubit

H ⊗ 1 : |0〉 ⊗ |0〉 �→ 1√
2

(|0〉 + |1〉)⊗ |0〉

= 1√
2

(|0〉 ⊗ |0〉 + |1〉 ⊗ |0〉).
(4)

We then apply Uf , which gives us the state

1√
2

(|0〉 ⊗ | f (0)〉 + |1〉 ⊗ | f (1)〉) (5)

and the final Hadamard transform applied on the first qubit then yields, as described
in Fig. 7

Df |00〉 = 1

2

(
|0〉 ⊗ (| f (0)〉 + | f (1)〉)+ |1〉 ⊗ (| f (0)〉 − | f (1)〉)

)
. (6)

Exercise 4 Compute the result of the Df transformation on the other three basis
states.

Deutsch’s algorithm uses this transformation Df together with another Hadamard
gate on the second qubit. It is described in Fig. 8.
The input to Df is (1⊗ H)|01〉 = |0〉 ⊗ 1√

2
(|0〉 − |1〉). Since

Df |01〉 = 1

2

(
|0〉⊗(| f (0)⊕1〉+| f (1)⊕1〉)+|1〉⊗(| f (0)⊕1〉−| f (1)⊕1〉)

)
, (7)
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Uf

0〉|

|0〉

HH

H

The transformation Df

Fig. 8 Deutsch’s circuit

(see Exercise 4) by linearity we can write the state |Ψ 〉 after application of Df as

|Ψ 〉 = 1

2
√

2

(
|0〉 ⊗ (| f (0)〉 − | f (0)⊕ 1〉 + | f (1)〉 − | f (1)⊕ 1〉)

+ |1〉 ⊗ (| f (0)〉 − | f (0)⊕ 1〉 − (| f (1)〉 − | f (1)⊕ 1〉))
)
.

(8)

For any x ∈ {0, 1}, | f (x)〉 − | f (x)⊕ 1〉 is equal to (−1) f (x)(|0〉 − |1〉). Hence |Ψ 〉
can be rewritten as

|Ψ 〉 = 1

2

((
(−1) f (0)+(−1) f (1))|0〉 + (

(−1) f (0)−(−1) f (1))|1〉))⊗ 1√
2
(|0〉−|1〉) .

(9)
We have therefore managed to transfer the values f (0) and f (1) to local phases in
front of the |0〉 and |1〉 states.

If f is balanced, then |Ψ 〉 = ± 1√
2
|1〉 ⊗ (|0〉 − |1〉) and if it is constant,

then |Ψ 〉 = ± 1√
2
|0〉 ⊗ (|0〉 − |1〉). A measurement of the first qubit of |Ψ 〉 in

the computational basis thus gives the answer to our problem with certainty. Fur-
thermore, the construction of |Ψ 〉 only requires one gate Uf (note that |Ψ 〉 =
Df |0〉 ⊗

( 1√
2
(|0〉 − |1〉)) = Df · (1⊗ H) · (|0〉 ⊗ |1〉)), so that one can determine

if f is balanced or constant with only one call to the black-box Uf . This is a strict
improvement over the best classical algorithm.

4 The Quantum Fourier Transform

In this section we briefly recall some facts about the classical Fourier Transform on
Abelian groups, and we define the quantum Fourier Transform, a key ingredient in
many quantum algorithms. In fact we will see that Deutsch’s algorithm, which we
studied in the previous section, used the quantum Fourier Transform over the group
(Z2,⊕).

Let (G,+) be a finite Abelian group and (U ,×) the multiplicative group of com-
plex numbers with modulus 1.
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Definition 1 A character on G is a function χ : G → U such that

∀g, h ∈ G χ(g + h) = χ(g)χ(h). (10)

It is known that in the Abelian case the set of all characters on G forms a group
Ĝ isomorphic to G (in particular there are as many characters as there are group
elements). We fix an isomorphism φ : G → Ĝ and denote by χg the image φ(g) of
g by φ. The only fact we will need on characters is the following lemma.

Lemma 1 (Schur’s orthogonality lemma) For every h, h′ ∈ G,

1

|G|
∑

g∈G

χh(g)χh′(g) = δhh′ . (11)

Example 1 Let G = (Z2,⊕). Then a character χ : G → U must be such that
χ(0) = χ(0 ⊕ 0) = χ(0)χ(0), and χ(0) ∈ U , so necessarily χ(0) = 1. Moreover,
in Z2, 1⊕ 1 = 0, so χ(1⊕ 1) = χ(1)2 = χ(0) = 1, and there are two possibilities:
either χ(1) = 1 (this gives us the trivial character, which is constant and equal to
1, and is denoted by χ0) or χ(1) = −1, in which case we get χ1. The group Ĝ is
Ĝ = {χ0, χ1}, and it can be checked that φ : G → Ĝ that sends 0 to χ0 and 1 to χ1
is indeed a group isomorphism.

Exercise 5 Let G = (Zn
2,⊕): elements of G are n-dimensional vectors of 0s and

1s, and the group law is componentwise addition modulo 2. Show that the characters
of G are the maps

χy : x ∈ Z
n
2 �→ (−1)x ·y ∀y ∈ Z

n
2 . (12)

Let f : G → X be a function defined on G and taking its values in some set X
(usually X = G,Z or R).

Definition 2 (Abelian Fourier Transform) The Fourier coefficients of f are

f̂ (x) = 1√|G|
∑

y∈G

χx (y) f (y). (13)

The Fourier transform of f is the function

f̂ : x �→ 1√|G|
∑

y∈G

f (y)χx (y). (14)

Example 2 Let f : Z2 → {0, 1} be a Boolean function. If f is constant, then
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f̂ (0) = χ0(0) f (0)+ χ0(1) f (1)√
2

= √
2 f (0), (15)

f̂ (1) = χ1(0) f (0)+ χ1(1) f (1)√
2

= f (0)− f (1)√
2

= 0. (16)

If f is balanced, then

f̂ (0) = f (0)+ f (1)√
2

= 1√
2
, f̂ (1) = f (0)− f (1)√

2
= ± 1√

2
. (17)

Label the elements of G as e1, . . . , eM , where M = |G|. Then the classical
Fourier Transform can be viewed as a matrix multiplication, multiplying the vector
f =( f (e1), . . . , f (eM )), by the Fourier transform matrix

F = 1√|G|

⎛

⎜⎜⎜⎝

χ1(e1) χ1(e2) . . . χ1(eM )

χ2(e1) χ2(e2) . . . χ2(eM )
...

...
...

χM (e1) χM (e2) . . . χM (eM )

⎞

⎟⎟⎟⎠ , (18)

where the χi = χei are the characters of Ĝ. Note that from Schur’s orthogonality
lemma (Lemma 1) it follows that the Fourier Transform matrix is unitary. From the
definition of the Fourier coefficients of f , we have that f̂ = Ff, where f̂ is the vector
( f̂ (e1), . . . , f̂ (eM )). If computed naively by matrix multiplication, this operation
would take O(M2) elementary operations. However, it is well known it can be sped
up to O(M log M) elementary operations, using the fast Fourier transform (FFT).

Exercise 6 In Exercise 5 you showed that the characters of G = (Zn
2,⊕) are the

maps χy : x ∈ Z
n
2 �→ (−1)x ·y for all y ∈ Z

n
2 . Write down the Fourier matrix F in

this case. If n = 1, can you relate F to the Hadamard transform? And in general?

Definition 3 The quantum Fourier transform (QFT) over an Abelian group G of
cardinality M is the unitary operation

QFT : |x〉 �→ 1√
M

∑

y∈G

χy(x)|y〉. (19)

With any function f : G → X we associate the state

| f 〉 = 1√
M

∑

x∈G

|x〉| f (x)〉. (20)

The state associated with the Fourier Transform f̂ of f is then
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| f̂ 〉 = 1

M

∑

x,y∈G

χy(x)|y〉| f (x)〉. (21)

We say that | f̂ 〉 is obtained by quantum Fourier sampling (QFS).

Note that quantum Fourier sampling produces a superposition over the Fourier
coefficients of f and that a measurement of state | f̂ 〉 outputs y ∈ G and z in X
with probability proportional to |∑x∈G, f (x)=z χy(x)|2. We can then estimate these

amplitudes by repeated sampling. | f̂ 〉 thus gives us some information on the func-
tion f through its Fourier coefficients and will be best used to distinguish functions
with very different Fourier coefficients.

Exercise 7 What is the state | f̂ 〉 obtained by quantum Fourier sampling when
f : Z2 → {0, 1} is a constant function? And when f is balanced? Compare it
to the state produced in Deutsch’s algorithm. Show that there is a measurement
such that, if you are given only one copy of | f̂ 〉, this measurement enables you to
distinguish with certainty between the case where f is constant and the case where
f is balanced.

We end this section by showing how the black-box Uf can be combined with
the Hadamard transform and the QFT to construct the state | f̂ 〉. Sampling from this
state will be the basis of several algorithms, and in particular of Shor’s algorithm for
factoring, in the next section.
For ease of exposition assume that |G| = M = 2n and |X | = 2p are powers
of 2, and suppose that we input the state |0⊗n〉|0⊗p〉 to the circuit of Fig. 9. Since
H |0〉 = 1/

√
2(|0〉+|1〉) (we will investigate the exact behavior of H⊗n in Sect. 5.1),

after the Hadamard transform, the state is

(
H⊗n|0⊗n〉

)
|0⊗p〉 =

( 1√
2
(|0〉 + |1〉)

)⊗n|0⊗p〉

= 1√
2n

∑

x∈{0,1}n
|x〉|0⊗p〉.

(22)

We then apply Uf , resulting in
∑

x∈{0,1}n |x〉| f (x)〉. Finally, after applying the QFT
to finish the quantum Fourier sampling routine, this state becomes

| f̂ 〉 =
∑

x,y∈G

χy(x)|y〉| f (x)〉. (23)

It is therefore possible to construct the state | f̂ 〉 using only one gate Uf . In the next
section we will show how it is possible to efficiently implement the QFT over some
groups G. Since we will reuse this circuit repeatedly, we state this as a lemma.
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H⊗n

Uf

QFT

Fig. 9 The transformation Df (quantum Fourier sampling) in the general case

Lemma 2 Let f : G → X be any function and M = |G|. There is a circuit that,
when given input |0⊗n+p〉, where n = $log M% and p = $log |X |%, outputs the state
| f̂ 〉.1 Moreover this circuit can be implemented by using only one gate Uf , one set
of gates implementing the QFT over G, and n Hadamard gates.

5 Deutsch–Josza and Simon’s Algorithms

In this section we will present two algorithms that make more elaborate use of the
QFT over the group Z

n
2 illustrating the applicability of Lemma 2.

5.1 The QFT over Z
n
2

Let G = (Zn
2,⊕). We are going to show that the quantum Fourier transform over G

is simply the tensor product of Hadamard gates H⊗n , so that it can be implemented
very efficiently (using n = log |G| gates).

Let us examine the action of H⊗n on an arbitrary n-qubit basis state x . The
transformation induced by a single Hadamard gate on a qubit i in the basis state |xi 〉
can be written as

H |xi 〉 = 1√
2
(|0〉 + (−1)xi |1〉) =

∑

yi∈{0,1}
(−1)xi ·yi |yi 〉. (24)

Applying this to H⊗n with |x〉 = |x1 . . . xn〉 we get

H⊗n|x1 . . . xn〉

= 1√
2n

⎛

⎝
∑

y1∈{0,1}
(−1)x1·y1 |y1〉

⎞

⎠⊗ . . .⊗
⎛

⎝
∑

yn∈{0,1}
(−1)xn ·yn |yn〉

⎞

⎠

= 1√
2n

∑

y∈{0,1}n
(−1)x1·y1+...+xn ·yn |y〉 = 1√

2n

∑

y∈{0,1}n
(−1)x ·y |y〉,

(25)

1 $x% denotes the smallest integer larger than x ∈ R.
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where x · y is the inner product of the vectors x and y mod 2. Since the characters
of Z

n
2 are simply the maps χy(x) = (−1)x ·y for y ∈ Z

n
2 (cf. Exercise 5), the gate

H⊗n exactly implements the QFT over Z
n
2.

5.2 The Deutsch–Josza Algorithm

Deutsch and Josza [19] introduced the following problem:

Input: An integer n and a Boolean function f : {0, 1}n → {0, 1}.
Promise: f is either constant or balanced (|{x : f (x) = 0}| = |{x : f (x) = 1}| =

2n−1).
Output: Constant or balanced.

This is a promise problem: we only need to answer correctly on inputs that satisfy
the promise of being either constant or balanced. There is no requirement on the
output of the algorithm if the input is neither constant nor balanced.

In the worst case, a classical deterministic algorithm will need at least 2n−1 calls
to f to answer this problem, since for any 2n−1 xi ∈ {0, 1}n , there exists a con-
stant function that evaluates to 0 on all the xi ’s, as well as a balanced function that
evaluates to 0 on all xi ’s.

However, this problem can be solved exactly using only one query to Uf by using
the circuit Df described in Sect. 4! To see this, we will introduce the complement
f ∗ of f : for all x , f ∗(x) = f (x)⊕ 1. If f is a constant function, then

| f̂ 〉 = 1

2n

∑

x,y

(−1)x ·y |y〉| f (x)〉

= 1

2n

∑

y

( ∑

x

(−1)x ·y
)
|y〉| f (0)〉 (26)

= |0⊗n〉| f (0)〉

and similarly, | f̂ ∗〉 = |0⊗n〉| f (0)⊕ 1〉. But if f is a balanced function, then

| f̂ 〉 = 1

2n

∑

x,y

(−1)x ·y |y〉| f (x)〉

= 1

2n

(
|0⊗n〉

( ∑

x

| f (x)〉
)
+

∑

x,y �=0

(−1)x ·y |y〉| f (x)〉
) (27)

and similarly,

| f̂ ∗〉 = 1

2n

(
|0⊗n〉

( ∑

x

| f (x)⊕ 1〉
)
+

∑

x,y �=0

(−1)x ·y |y〉| f (x)⊕ 1〉
)
. (28)
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H⊗n

Uf

QFT

H

0〉|

|

|

0〉

1〉

Fig. 10 The Deutsch–Josza circuit

Since f is balanced,
∑

x | f (x)〉 = ∑
x | f (x)⊕1〉, so | f̂ 〉−| f̂ ∗〉 has zero amplitude

on all states that have their first register in the basis state |0⊗n〉. We saw that in case
f was constant, | f̂ 〉− | f̂ ∗〉 = |0⊗n〉(| f (0)〉− | f (0)⊕1〉). It is therefore possible to
distinguish with certainty between the case when f is balanced and the case when
it is constant by measuring the first register of | f̂ 〉 − | f̂ ∗〉: if the outcome is |0⊗n〉,
then the function is constant; otherwise it is balanced.

How can we construct | f̂ 〉− | f̂ ∗〉 efficiently? Recall that Uf |x〉|a〉 = |x〉| f (x)⊕
a〉. So, when given as input the state |0⊗n〉|1〉, the circuit Df outputs exactly | f̂ ∗〉.
By linearity, | f̂ 〉 − | f̂ ∗〉 can be constructed using only one call to Df : it suffices to
input the state |0⊗n〉(|0〉 − |1〉)/√2 (which can be produced from |0⊗n〉 ⊗ |1〉 by
applying a Hadamard gate on the last qubit) to the circuit Df . The final circuit for
solving the Deutsch–Josza problem is described in Fig. 10.

Exercise 8 For any s ∈ Z
n
2 let fs : x ∈ Z

n
2 �→ s · x. Show that the quantum states

| f̂s〉 and | f̂s′ 〉 are orthogonal if s �= s′. Use this to devise a quantum algorithm for
the following problem, due to Bernstein and Vazirani [11]:

Input: An integer n and a Boolean function f : Z
n
2 → {0, 1}.

Promise: There is an s ∈ Z
n
2 such that f = fs .

Output: s.

What is the query complexity of your algorithm? Give a classical algorithm that
solves this problem by using n queries to f . Using coding theory, it can be shown
that this is essentially optimal, since any query to f gives us at most 1 bit of infor-
mation (f takes its values in {0, 1}).

5.3 Simon’s Algorithm

Simon’s algorithm [46] studies the periodicity of functions defined on Z
n
2. This is

the first quantum algorithm that has an exponential advantage when compared to the
best classical probabilistic algorithm. It solves the following promise problem:

Input: A function f : Z
n
2 → {0, 1}n .

Promise: f is periodic : there exists a ∈ Z
n
2 such that for all x, y ∈ Z

n
2, f (x) =

f (y) if and only if y = x ⊕ a.
Output: a.
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Since f has no particular structure apart from its periodicity, the best any clas-
sical probabilistic algorithm can do is query elements at random until a pair x �= y
such that f (x) = f (y) is found, and then output a = x ⊕ y. Using the birthday
paradox, the expected number of queries necessary before such a collision is found
is of order Ω(2n/2).

We will solve this problem using almost exactly the same quantum circuit as we
used in the Deutsch–Josza algorithm. The periodicity of f means that there exists
a partition of the 2n input strings into two sets X and X = {x ⊕ a|x ∈ X} with
|X | = |X | = 2n−1, such that all the values f (x) are distinct for x ∈ X and similarly
for X . Now let us take a look at state | f̂ 〉 obtained by quantum Fourier sampling
(see Definition 3):

| f̂ 〉 = 1

2n

∑

x,y∈Z
n
2

(−1)x ·y |y〉| f (x)〉

= 1

2n

∑

x∈X, y∈Z
n
2

((−1)x ·y + (−1)(x⊕a)·y)|y〉| f (x)〉

= 1

2n−1

∑

x∈X, y∈Z
n
2

y·a=0

(−1)x ·y |y〉| f (x)〉.

(29)

By measuring the first register in the computational basis, we obtain a random y1 =
y ∈ Z

n
2 such that y1 · a = 0, thereby gaining 1 bit of information about the period a.

We can now repeat this algorithm to obtain y2 such that y2 · a = 0, y3 such that
y3 · a = 0, and so on. These yi form a subspace of the n-dimensional vector space
of all n-bit strings (over Z2). If among the yi there are n−1 vectors that are linearly
independent (i.e., such that they span a space of dimension n−1), then the equations
a · yi = 0 completely determine a �= 0. But for each set of yi that do not yet span
a space of dimension n − 1 the probability that the next y will be outside the space
is at least 1/2, because the space spanned by them contains at most 2n−2 out of the
2n−1 possible y’s. Hence after O(n) repetitions of the algorithm with a probability
exponentially close to 1 we will have enough information to determine a.

Since the construction of | f̂ 〉 requires only one black-box query to f (cf.
Lemma 2), this gives an algorithm that solves Simon’s problem with probability
exponentially close to 1 using only O(n) queries to f , which constitutes an expo-
nential speed-up compared to the Ω(2n/2) queries required by any classical proba-
bilistic algorithm.

6 Factoring in Polynomial Time

The algorithms in the previous section have laid the foundation for one of the
major breakthroughs in quantum computation: Shor’s 1994 algorithm for factoring
[44]. The basic ingredients of this algorithm can already be found in Deutsch’s and
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Simon’s algorithms. However, some of the ingredients are much more sophisticated,
and we will detail them in this section one by one.

6.1 The QFT over ZM

Let M be a positive integer and ZM = {0, . . . ,M − 1} the cyclic group of inte-
gers modulo M . Let ω = e2 iπ/M be a primitive M th root of unity. The group of
characters of ZM is constituted of the M maps χi : ZM → U, χi (k) = ωi ·k , for
i = 0, . . . ,M − 1. So, in the case of the cyclic group ZM , the QFT is the unitary
operation:

QFT : |x〉 �→ 1√
M

∑

y∈ZM

ωx ·y |y〉. (30)

For the QFT over ZM to be used in an efficient algorithm, we need to show that it
can be efficiently implemented using only standard one or two-qubit gates. We will
see that O(log2 M) such gates suffice.

For ease of presentation let us assume that M = 2n . To evaluate ωx ·y =
exp( 2π i x ·y

2n ), decompose y as y = y0 + 2y1 + . . .+ 2n−1 yn−1, so that

ωx ·y = ωxy0 · ω2xy1 · · ·ω2n−1xyn−1 (31)

and

∑

y∈ZM

ωx ·y |y〉 =
∑

y0∈{0,1},...,yn−1∈{0,1}
ωxy0 · ω2xy1 · · ·ω2n−1xyn−1 |y0, . . . , yn−1〉,

=
n−1⊗

i=0

⎛

⎝
∑

yi∈{0,1}
ω2i xyi |yi 〉

⎞

⎠ ,

=
n−1⊗

i=0

(
|0〉 + ω2i x |1〉

)
.

(32)

Note that ω2i x = e2 iπ2i−n x only depends on the low-order bits of x : to reflect this
we introduce the notation .xi xi−1 . . . x0 = xi/2 + xi−1/4 + . . . + x0/2i+1, so that
ω2i x = e2 iπ.xn−1−i ...x0 and finally

1√
M

∑

y∈ZM

ωx ·y |y〉 = 1√
2n

(
|0〉 + e2π i (.xn−1...x1x0)|1〉

)
⊗

· · · ⊗
(
|0〉 + e2π i (.x1x0)|1〉

)
⊗

(
|0〉 + e2π i (.x0)|1〉

)
.

(33)
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Since the Hadamard on qubit xi can be thought of as performing |xi 〉 → (|0〉 +
e2π i (.xi )|1〉), if we apply a Hadamard to the first qubit of |x〉 = |xn−1 . . . x0〉 (notice
that we have written x in reverse, so that the registers containing x have to be
swapped at the beginning of the circuit), then the resulting state is

1/
√

2
(
|0〉 + e2π i (.xn−1)|1〉

)
|x1 . . . xn−1〉. (34)

Now, define the rotations

Rd =
(

1 0

0 e−
2 iπ
2d

)
. (35)

Then, applying R2 controlled on qubit 2, R3 on qubit 3, up to Rn controlled on qubit
n (see Exercise 2 on how to implement this) yields the state

|0〉 + e2π i (.xn−1···x1x0)|1〉√
2

|xn−2 . . . x0〉. (36)

We have thus produced the first qubit of QFT|x〉. Using the same idea, we apply
a Hadamard gate on the second qubit of |x〉 (which was left unchanged by the
previous operations) to get 1/

√
2

(|0〉 + e2π i (.xn−2)|1〉) |xn−3 . . . x0〉, and apply-
ing R2 controlled on qubit 3, R3 controlled on qubit 4, up to Rn−1 controlled
on qubit n, we get 1/

√
2

(|0〉 + e2π i (.xn−2···x1x0)|1〉) |xn−3 . . . x0〉. Repeating this
operation with the third, etc., qubits gives QFT|x〉 (see Fig. 11). This circuit uses
1
2 n(n + 1) = O(log2 M) gates.

H R2 Rn

H R2 Rn−1

H R2

H

Fig. 11 The QFT over ZM

6.2 Shor’s Algorithm

The fact that factoring big integers is hard is a cornerstone of many cryptographic
systems used today (e.g., the RSA cryptosystem). Factoring clearly is in NP, since
it is easy to check whether the product of two integers equals a given value, but it is
not believed to be NP-complete. Currently the best classical algorithms for factoring
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are probabilistic and take sub-exponential time (in the input size : the number of bits
required to represent the number that we want to factor) to complete.

So it was an important breakthrough when Shor published a polynomial-time
quantum algorithm for factoring in 1994. His algorithm follows the basic scheme
underlying the previous algorithms that we have studied. Its heart is an efficient
quantum algorithm for the following problem, which is similar to Simon’s period-
finding problem, but over another group.

Input: An integer N ∈ N∗ and a function f : Z → X .
Promise: There is an a < N such that f is a-periodic:

∀x, y ∈ Z f (x) = f (y) ⇐⇒ ∃k ∈ Z x − y = ka . (37)

Output: a.

We first outline a classical polynomial-time reduction from factoring to the
period-finding problem and then we show how period finding can be efficiently
solved by a quantum algorithm.

Let N be the integer that we would like to factor. Our aim is to find a non-trivial
factor q of N . If we are able to do so, then we can run our algorithm recursively on
q and N/q to completely factor N . Suppose we are given an x such that x2 = 1
mod N , and x �= ±1 mod N . Then N |(x2 − 1) = (x − 1)(x + 1), so N has a
common factor with x+1 or x−1, and by hypothesis this factor is different from N .
By computing the greatest common divisor gcd(N , x+1) and gcd(N , x−1)we then
find non-trivial factors of N , and this can be done efficiently in O(log N ) operations
using Euclid’s algorithm. Now let us see how we can find an x such that x2 = 1
mod N . Let y be any integer modulo N . If y is not co-prime to N , then by Euclid’s
algorithm we have already found a divisor of N . Otherwise, the function f : Z →
ZN , f : x �→ yx is periodic of period a, where a is the order of y: the smallest
positive integer such that ya = 1 mod N . Now if a is even, then (ya/2)2 = 1
mod N and we can choose x = ya/2. By using the Chinese remainder theorem, it
can be shown (see, e.g., [34, 39, 40]) that a y taken at random in {0, . . . N − 1} will
have even order modulo N and will be such that ya/2 �= ±1 mod N with probability
at least a constant (except if N is even, which immediately gives a factor 2 or if
N is a power of a prime, which can be tested efficiently beforehand). So all we
have to do is pick a y at random, compute its order, and if it is even then compute
gcd(ya/2 − 1, N ) and gcd(ya/2 + 1, N ) to find a non-trivial factor of N .

But how do we compute the order of a given y? Let f : Z → ZN be the function
that maps an integer x to yx mod N . Then f is periodic, and its period is exactly
the order of y. So we have reduced factoring to finding the period of a given function
defined over the integers.

Before devising a quantum algorithm for the general case, let’s first restrict our-
selves to the case where f : ZM → X is a periodic function of period a|M . Then
| f̂ 〉 is given by



330 J. Kempe and T. Vidick

| f̂ 〉 = 1

M

∑

x,y∈ZM

ωxy |y〉| f (x)〉,

= 1

M

∑

x∈Za ,y∈ZM

( M/a−1∑

j=0

ω(x+ ja)y
)
|y〉| f (x)〉.

(38)

Whenever ay = 0 mod M , the geometric sum
∑M/a−1

j=0 ω(x+ ja)y equals ωxy M/a,
and otherwise it is 0, so

| f̂ 〉 = 1

a

∑

x∈Za

( ∑

c∈Za

ωx cM/a |cM/a〉
)
| f (x)〉. (39)

A measurement of the first register of | f̂ 〉 will thus give a uniformly random
y = cM/a. To get a, we need to solve y/M = c/a, where y and M are known.
Decomposing a as a product of primes, it is easily seen that at most $log2 a% ele-
ments of Za are not co-prime to a, and since c is taken uniformly at random in
Za , after $log2 a% = O(log N ) repetitions of this procedure, we obtain a c that
is co-prime with a with high probability. In this case, a can be found easily by
expressing y/M as a reduced fraction: the denominator then gives a.

So O(log N ) copies of the state | f̂ 〉 obtained from quantum Fourier Sampling
suffice to determine a with high probability, and we have already shown that | f̂ 〉
could be produced by a circuit using only one query to f (Lemma 2), O(log M)
Hadamard gates and O(log2 M) two-qubit gates implementing the QFT over ZM

(Sect. 6.1). Notice that here f is the exponentiation x �→ yx . This function can be
implemented very efficiently, using only O(log N ) gates, by using the classical fast
exponentiation algorithm, which is based on repeated squaring.

In the general case, f is a function from Z to X . This poses two added difficul-
ties. First we need to cut off the domain of f . To this end we first pick an integer
M > N and consider the restriction fM of f to ZM . Picking M large enough (see
below) guarantees that there is sufficient periodicity in the domain we have chosen.
The second difficulty is that we are unlikely to pick M to be exactly a multiple
of the unknown period a. Hence, since fM is not perfectly periodic, there will be
some extra terms in the superposition (39). However, these terms are of small norm
compared to the relevant terms. More precisely, Exercise 9 shows that there is a
constant probability of measuring a y satisfying

c

a
− 1

2M
≤ y

M
≤ c

a
+ 1

2M
, (40)

where c ∈ {0, . . . , a − 1}. But two distinct fractions with denominator at most N
must be at least 1/N 2 apart, so if we choose M > N 2 then c/a is the unique fraction
with denominator at most N within distance 1/2M from y/M and can be deter-
mined with the continued fraction expansion. The total run-time of this algorithm is
still O(poly(log N )).
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Exercise 9 The aim of this exercise is to show that if a does not divide M, then a
measurement of (39) still yields an integer y such that y/M is close to c/a, where c
is an unknown integer, with good probability.

1. Show that there −a/2 ≤ ay mod M ≤ a/2.
2. Prove the following inequalities:

∀θ ∈ [−π, π ] 2|θ |
π

≤ |1 − ei θ | ≤ |θ |. (41)

3. Let A = 7M/a8 and ω = e2 iπ/M .2 Show that if y is such that −a/2 ≤ ay
mod M ≤ a/2, then

∣∣∣
ωi A ay − 1

ωay − 1

∣∣∣ ≥ 2

π
A −

(
1+ 2

π

)
. (42)

4. By bounding the geometric series
∑7M/a8−1

j=0 ω(x+ ja)y, conclude that when mea-
suring the first register of the resulting superposition (corresponding to (39)),
we have constant probability of measuring an integer y such that there exists an
integer c such that

c

a
− 1

2M
≤ y

M
≤ c

a
+ 1

2M
. (43)

7 The Hidden Subgroup Problem

The algorithms of Simon and Shor can be seen as solving special instances of a more
general problem, called the hidden subgroup problem (HSP), as we show in this
section. With very similar methods to the ones in the previous section the HSP over
Abelian groups can be solved efficiently by a quantum algorithm. Other Abelian
Hidden Subgroup problems that can be solved this way are discrete logarithm [45],
the hardness of which is the basis of some classical cryptosystems, and finding solu-
tions to Pell’s equation [29], a number theoretic problem known to be at least as hard
as factoring. As another application of the HSP, Friedl et al. [26] solve the hidden
translation problem: given two functions f and g defined over some group Z

n
p such

that f (x) = g(x + t) for some hidden translation t , find t .
Formally, the HSP is the following promise problem:

Input: A finite group G, a set S, and a function f : G → S (given as a black-box).
Promise: f is constant on (left) cosets of some unknown subgroup H of G, and f

takes different values on distinct cosets.
Output: H (a set of generators).

2 7x8 denotes the largest integer smaller than x ∈ R.
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Example 3 Take G = Z
n
2, and H = {0, a} ⊂ G. Then the cosets of H in G are

all sets of the form {x, x ⊕ a} for x ∈ Z
n
2. A function f is constant on every coset

and takes different values on distinct cosets, if and only if it is periodic of period
a. Simon’s algorithm shows that in this case, we can efficiently (with O(log |G|)
queries to the black-box implementing f ) find a, and thus reconstruct the subgroup
H , which is generated by a.

In case G is an Abelian group, the HSP can be efficiently solved by a quantum
algorithm that follows the basic lines of Simon’s and Shor’s algorithms as follows.

1. Prepare a random coset state. Use the circuit Df to prepare the state

| f̂ 〉 = 1

|G|
∑

x,y∈G

χy(x)|y〉| f (x)〉 = 1

|G|
∑

c∈G/H
y∈G

( ∑

x∈H

χy(cx)
)
|y〉| f (cH)〉. (44)

Measure the last register. This selects a coset cH of H in G at random and
projects the state onto

| f̂ ′〉 = 1√|G| · |H |
∑

y∈G

( ∑

x∈H

χy(cx)
)
|y〉. (45)

2. Fourier sampling. Measure the first register. Get y ∈ G with probability

∣∣∣
∑

x∈H

χy(cx)
∣∣∣
2 =

∣∣∣χy(c)
∑

x∈H

χy(x)
∣∣∣
2 =

∣∣∣
∑

x∈H

χy(x)
∣∣∣
2
. (46)

Exercise 10 Show that, for any y ∈ G,
∑

h∈H χy(h) is nonzero if and only if χy is
the identity on H. (Hint: if there is an h such that χy(h) �= 1, multiply the sum by
χy(h), use the multiplicativity of characters and the fact that h′ ∈ H �→ h · h′ ∈ H

is an isomorphism). Deduce that | f̂ ′〉 is a uniform superposition over all y ∈ G
such that χy(h) = 1 for all h ∈ H.

Exercise 10 shows that at Step 2 of the algorithm we get a random y ∈ H⊥ =
{y ∈ G, χy(h) = 1 ∀h ∈ H}. Such a y can be seen as giving a linear constraint on
H , and with O(log |H |) independent such constraints we can efficiently reconstruct
H . Hence, by repeating the quantum Fourier sampling a sufficient number of times,
we can find a generating set for H .

This algorithm does not extend to the non-Abelian case, because characters have
a much more complicated structure (in fact for non-Abelian groups one looks at
the so-called irreducible representations, which take their values in the set of uni-
tary matrices Uk(C) rather than simply U = U1(C)). Giving an efficient algorithm
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solving the HSP for non-Abelian groups is an active area of research, and such an
algorithm would have interesting consequences. For instance, an efficient solution
for the symmetric group Sn (permutations of n elements) would give an efficient
algorithm for the graph isomorphism problem: to determine whether two given
graphs are equal up to permutation of the vertices (see Exercise 11). This is another
NP-problem that is not known to be NP-complete, similar to the factoring problem.
It is still possible to define, and sometimes efficiently compute, the Fourier trans-
form and the QFT over non-Abelian groups: for example, it has been shown by
Beals [8] that the QFT over the symmetric group can be implemented efficiently;
the difficulty is to extract enough information about the hidden subgroup from the
corresponding coset states. In fact a recent series of papers [31, 27, 33, 38, 30]
showed that this approach to the problem cannot work (in the case of measure-
ments on one, two, or even log n copies of the state obtained from quantum Fourier
sampling).

Another important problem is the HSP over the dihedral group DN (the group
of symmetries of a regular N -gon). Again the QFT can be implemented efficiently
and the difficulty is posed by the subsequent extraction of the necessary information
from the resulting states. A solution in this case would give an algorithm for the
shortest vector problem in a lattice; this reduction was shown by Regev [41]. The
shortest vector problem is at the base of several classical cryptographic schemes
designed as an alternative to those based on factoring or discrete logarithm. For
the HSP over the dihedral group D2n Kuperberg [35] gives a quantum algorithm
that runs in time 2O(

√
n), a quadratic improvement in the exponent over any known

classical algorithm.

Exercise 11 (Reduction from graph isomorphism to HSP) Let G1 and G2 be two
connected graphs on n vertices and define G = G1 ∪ G2.

Let f : S2n → {permutations of G} be defined as f (π) = π(G). We decide
to represent graphs by the ordered list of their edges (vi , v j ), where (vi , v j ) is an
ordered pair of vertices. In this representation, f is efficiently computable, and it
is easy to check whether f (π1) = f (π2) for any two permutations π1 and π2. Let
H = {π ∈ S2n, f (π) = G}.

1. Show that H is a subgroup of S2n.
2. Show that f (π1) = f (π2) ⇐⇒ π1 H = π2 H. Conclude that f is constant on

H and different on different cosets of H.
3. Let π : G - G be an isomorphism. Show that if π cannot be decomposed as
(π1, π2) where πi is an automorphism of Gi , then G1 and G2 are isomorphic.
Prove that given a set of generators for H, it is easy to check if H contains any
π that does not admit such a decomposition.

4. Conclude that if you had access to an efficient quantum algorithm for solving
the HSP over S2n, then you could efficiently decide whether G1 and G2 are
isomorphic.
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8 Grover’s Algorithm for Unstructured Search

The problem of unstructured search is one of the most frequently encountered funda-
mental problems in information processing. Imagine you have access to a database
that contains N items and such that one of these items has a special mark. This mark
is modeled by a function f : {1, . . . , N } → {0, 1} such that f (i) = 1 for exactly
one i in {1, . . . , N }, the marked item. Your goal is to find the marked item using
the least amount of queries to f possible. It is assumed that the database has no
particular structure (for instance, its items are not sorted), so f is simply given as a
black-box and has no special properties that could be used to speed up the search.
In some sense this problem is a black-box version of NP-complete problems: when
we strip off the structure of the problem, what we want is to search for a solution,
which, once found, can be verified efficiently (i.e., the function f (x) = 1 if and
only if x is a valid solution of the problem can be computed efficiently when x is
given).

Any deterministic or randomized algorithm that succeeds to solve this problem
with constant probability will have to make Ω(N ) queries to f on average, since
any query has probability 1/N of giving the marked item, and otherwise gives us no
information at all about its location. In 1996 Grover [28] found a quantum algorithm
that could find the marked item with very high probability by using only O(

√
N )

queries to f . Moreover, a matching lower bound was proved in [10], showing that
Grover’s algorithm is essentially optimal, and also showing that quantum algorithms
cannot solve NP-complete problems efficiently in a black-box setting, i.e., without
using some structure of the problem.

The heart of the algorithm is the repeated application of a special gate D, called
the diffusion transform, that can be seen as an inversion about the mean or the aver-
age. Consider an arbitrary superposition |Ψ 〉 = ∑

y∈{0,1}n αy |y〉 on n qubits (for
simplicity we assume that N = 2n is a power of 2), where αy ∈ C are the ampli-
tudes:

∑
y |αy |2 = 1. Let α = 1

N

∑
y αy be the average of the amplitudes of all basis

states in |Ψ 〉. The transformation D is such that, after applying D, the amplitude of a
basis state is transformed into its symmetric around α, i.e., αy �→ 2α−αy . Figure 12
illustrates the transformation D.

To see how to implement D, note that it can be defined as D = H⊗n RH⊗n ,
where R is the diagonal unitary matrix that sends the basis state |0⊗n〉 to itself
and flips the sign of all other basis states (see Exercise 2 for implementing R with
elementary gates). Indeed,

|00〉 |01〉 |10〉 |11〉

average (α)

(before)
|00〉 |01〉 |10〉 |11〉

(after)

Fig. 12 The diffusion transform D
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H⊗n RH⊗n|Ψ 〉 = 1√
2n

H⊗n R
∑

x,y

(−1)x ·yαy |x〉,

= − 1√
2n

H⊗n
( ∑

x,y

(−1)x ·yαy |x〉
)
+ 2√

2n

( ∑

y

αy

)
H⊗n|0〉,

= −
∑

y

αy |y〉 + 2α
∑

x

|x〉,

=
∑

y

(2α − αy)|y〉.
(47)

Note that the uniform superposition 1√
2n

∑
y |y〉 is a fixed point of D.

In Sect. 4 we saw how the gate

S f = (I⊗n ⊗ H) ·Uf · (I⊗n ⊗ H) (48)

can be used to introduce a phase −1 = eiπ for every state |y〉 such that f (y) = 1,
by using an ancilla qubit initialised in |1〉.

Exercise 12 Check that if y is such that f (y) = 1, then S f |y〉 ⊗ |1〉 = −|y〉 ⊗ |1〉,
and if f (y) = 0, then S f |y〉 ⊗ |1〉 = +|y〉 ⊗ |1〉.

Suppose we first prepare a uniform superposition over all N = 2n basis states on
n qubits. Applying the transformation S f , we can change the sign of the basis
state corresponding to the marked item to its opposite, while leaving all other
phases the same. So now the amplitudes of all unmarked items are still equal to
the same value, 1/

√
N , while the sign of the marked item’s amplitude is flipped,

−1/
√

N . The average amplitude α is thus close to 1/
√

N . If we apply D, then
the amplitudes of unmarked items, being close to the average, will remain roughly
unchanged, whereas the amplitude of the marked item will go from −1/

√
N to

2/
√

N−(−1/
√

N ) = 3/
√

N . Repeating this process c
√

N times for some constant
c to be determined later will result in the marked item’s amplitude being close to 1,
and thus a measurement in the computational basis will give us the marked state
with good probability.

More precisely, Grover’s algorithm proceeds as follows (see Fig. 13):

1. Using the Hadamard transform, prepare a uniform superposition over all N basis
states and initialise an ancilla qubit to state |1〉. The state of the whole system is

then |Ψ0〉 =
(

1√
2n

∑
x∈{0,1}n |x〉

)
⊗ |1〉.

2. Repeat the following c
√

N times

(a)Apply the unitary Sf to the whole system
(b)Apply the diffusion transform D to the first register

3. Measure the resulting state in the computational basis
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Uf

DH⊗n0〉
0〉
0〉|

|
|
|
|
|
|
|
|

0〉

0〉
0〉
0〉
0〉

︷︸︸︷

Grover iteration: repeat p = O(
√

N ) times

H H

Uf

D

H H

The transformation Sf

1〉

Fig. 13 The circuit for Grover’s algorithm

Number the inner loops from 1 to p = c
√

N , where c is a constant to be deter-
mined later (in fact the exact value for p is very important, as we will see below).
Let αi denote the amplitude of any unmarked state at the beginning of the i th inner
loop (note that by symmetry all unmarked states are treated in the same way and
hence have the same amplitudes throughout the algorithm), and βi the amplitude of
the marked state, so that α0 = β0 = 1/

√
2n . We would like to have |βp|2 ≥ 1/2, so

that the measurement gives the marked state with good probability.

Lemma 3 For all i = 0, . . . , p − 1,

αi+1 =
(

1− 2

N

)
αi − 2

N
βi and βi+1 = 2

(
1− 1

N

)
αi +

(
1− 2

N

)
βi .

(49)

Proof Let x0 be the marked state and |Ψi 〉 =
(∑

x �=x0
αi |x〉 + βi |x0〉

)
⊗|1〉 the state

of the system at the beginning of the i th iteration of the loop. Then, by Exercise 12,

after applying S f we have |Ψ ′
i 〉 = S f |Ψi 〉 =

(∑
x �=x0

αi |x〉 − βi |x0〉
)
⊗ |1〉. Here

α = 1/N ((N − 1)αi − βi ), so after applying D we get

|Ψi+1〉 = D ⊗ 1|Ψ ′
i 〉

=
⎛

⎝
∑

x �=x0

(2α − αi )|x〉 + (2α + βi )|x0〉
⎞

⎠⊗ |1〉

=
⎛

⎝
∑

x �=x0

((
1− 2

N

)
αi − 2

N
βi

)
|x〉

+
(

2

(
1− 1

N

)
αi +

(
1− 2

N

)
βi

)
|x0〉

)
⊗ |1〉 ;

(50)

which proves the lemma. ��
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Lemma 4 For all i = 1, . . . , p,

αi = 1√
N − 1

cos((2i + 1)θ) and βi = sin((2i + 1)θ) (51)

where θ is such that sin2 θ = 1/N.

Proof [Exercise] Hint: prove it by induction using Lemma 3 and the trigonometric
formulas cos(a + b) = cos a cos b − sin a sin b, cos 2θ = 1 − 2 sin2 θ = 1 − 2/N ,

and cos θ =
√

1− sin2 θ = 2
√

N − 1/N .
Take p = $ π8θ % (i.e., choose c appropriately). Since for large N , θ - sin θ -

1/
√

N , we have p = O(
√

N ). By Lemma 4, βp = sin((2p+1)θ) = sin($π/4%+θ).
Assuming N is big enough so that θ < π/4, we have 1/

√
2 < βp ≤ 1. This means

that, after exactly p iterations of the inner loop, the amplitude of the marked state
will be bigger than 1/

√
2, and so this state will be measured with probability greater

than 1/2 in the last part of the algorithm.
Lemma 4 shows that the amplitude of the marked state oscillates as a sine func-

tion when we go through the inner loop of Grover’s algorithm. It is thus important
to know precisely the number of iterations of the inner loop that are necessary: for
instance if we make 4p iterations, then we will have βi ≈ sin(π + θ) ≈ 1/

√
N ,

and there will be a negligible probability of measuring the marked state in the last
step of the algorithm (see, however, Exercise 14 on how to circumvent knowing p
exactly). ��

Exercise 13 (Extension to t marked items) Assume that the database has exactly t
marked items, and your goal is to return any one of these marked items. By proving
a closed form formula similar to the one in Lemma 4, determine the amplitudes of
the marked and unmarked basis states after i iterations of the inner loop. Use this to
show that O(

√
N/t) iterations of the inner loop suffice to have probability greater

than 1/2 of measuring a marked item.

Exercise 14 (Unknown number of marked states) Assume that there are t marked
items, but t is unknown. A priori we do not know for how long to run the iteration
in Grover’s algorithm to measure a marked state with good probability. Devise an
algorithm that runs in time O(

√
N ) and finds a marked item with high probability in

this case. Hint: Run Grover’s algorithm for p = 1, 2, 4, . . . , 2log N/2 checking if the
resulting measurement gives a marked item or not. Show that with good probability
one of these runs succeeds to find a marked item.

Several quantum algorithms that use Grover’s search as a subroutine have been
found and shown to provide a polynomial speed up over their classical counterparts.
For example, Brassard et al. [12] give a quantum algorithm for the problem of find-
ing collisions in a k-to-1 function. For a k-to-1 black-box function f the task is to
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find a collision, i.e., two inputs x �= y such that f (x) = f (y). The idea is to first
classically query a set K of size |K | = (N/k)1/3 and check it for collisions, which
can be done with O((N/k)1/3) queries. If a collision is found the algorithm outputs
it and stops, otherwise we set up a Grover search for a function f defined outside
K that is 1 if and only if there is a collision with an element in K . In that case
there are (k − 1)|K | ≈ k2/3 N 1/3 “marked items” and Grover’s search runs in time√

N/(k2/3 N 1/3) = (N/k)1/3, by Exercise 13. So the total number of queries of this
algorithm is O((N/k)1/3), better than any classical algorithm.

Other applications of Grover’s algorithm include deciding whether all elements
in the image of a function on N inputs are distinct [13], which can be done in
time O(N 3/4) with Grover’s algorithm as a subroutine. Note that recently a better
quantum algorithm based on quantum walks has been given for this problem [5] (see
next Sect.). In [21] optimal quantum algorithms for graph problems such as (strong)
connectivity, minimum spanning tree, and shortest path are given using Grover’s
search.

9 Developments

We have seen two types of quantum algorithms: those that implement a version
of the hidden subgroup problem or use the QFT and those that use a version of
Grover’s search. For some time these algorithms have dominated the field. Recently,
two alternative trends have emerged, which we briefly outline in this section.

9.1 Quantum Walks

One of the biggest breakthroughs in classical algorithm design was the introduction
of randomness and the notion of a probabilistic algorithm. Many problems have
good algorithms that use a random walk as a subroutine: for instance Aleliunas et al.
[3] give a very space-efficient classical probabilistic algorithm for the undirected
graph connectivity problem based on random walks. With this motivation in mind,
quantum analogues of random walks have been introduced. There exist two different
models of a quantum walk: the continuous-time model introduced in [23] and the
discrete-time model of [1, 6]. The continuous model gives a unitary transformation
directly on the space on which the walk takes place. The discrete model is a direct
analogue of the classical random walk: it introduces an extra coin register which is
used as a “quantum coin flip,” and performs a walk step controlled on the state of
the coin.

The two main quantities that characterize a random walk’s performance are

• its mixing time: the time it takes for the walk to have a close to uniform proba-
bility of having reached any point in the domain,

• its hitting time: the expected time it takes to hit a certain point in the domain
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These quantities have been analyzed for several graphs in both the continuous
and the discrete model. It turns out that a quantum walk’s mixing time cannot be
more than quadratically faster than its classical counterpart’s [1]; so the classical
and quantum performances are polynomially related. However, a quantum walk can
provide an exponential improvement in terms of its hitting time: it has been shown
that there are graphs and two vertices in them such that the classical hitting time
from one vertex to the other is polynomial in the number of vertices of the graph,
whereas the quantum walk is exponentially faster. This idea was used in [15] to
devise an (artificial) problem for which a quantum walk-based algorithm gives a
provable exponential speed-up over any classical probabilistic algorithm. It is open
whether quantum hitting times can be used to speed up classical algorithms for
relevant problems.

Following this work a quantum walk algorithm has been introduced in [43] for
the problem of finding a marked vertex in a graph. The idea is very simple: the algo-
rithm starts in the uniform superposition over all vertices. At each step it performs
a quantum walk that basically moves randomly over the graph, except when it hits
a marked vertex, at which point it stays there. It can be shown that after a sufficient
time the amplitude of the state concentrates in the marked item(s); a measurement
then finds a marked item with high probability.

This algorithm solves Grover’s problem on a graph. Why do we need a quantum
walk search if we have Grover’s algorithm? It turns out that there are situations when
the diffusion step D of Grover’s algorithm is too costly to implement (because the
local topology of the database does not allow for it, because of limitations on the
quantum gates or because it is too costly in a query setting). A quantum walk only
makes local transitions and can be more advantageous. One example is the search for
a marked item in a 2-dimensional database. In this case Grover’s algorithm requires√

N queries, but to shift amplitude from one item of the database to another on the
grid takes an additional

√
N steps on average per query. The net complexity of the

algorithm becomes
√

N ·√N = N and the quantum advantage is lost. The quantum
walk algorithm has been shown to find a marked item in time O(

√
N log N ) [7].

Another example of the superiority of the quantum walk search over Grover’s
algorithm has been given in [5] by Ambainis, who uses a quantum walk to give an
improved algorithm for element distinctness, which runs in optimal time O(N 2/3);
thus improving over Grover-based algorithms for this problem (which runs in
time O(N 3/4), see Sect. 8). Several new quantum walk-based algorithms with
polynomial improvements over Grover-based algorithms have followed suit (see
[37, 14, 36]). For references on quantum walks, see [32, 4].

9.2 Adiabatic Quantum Algorithms

Adiabatic quantum algorithms were introduced by Farhi et al. [22] as an interesting
alternative to the use of quantum gates and circuits for the design of algorithms. The
idea is to describe a specific hermitian matrix H (called Hamiltonian in the context
of physical systems) that concentrates all the constraints that we want to impose
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on a solution to our problem through a decomposition H = ∑
i Hi , where each Hi

represents a local constraint. By definition, the ground state (lowest eigenstate) of H
violates the smallest number of such constraints and represents the desired optimal
solution, so our aim is to obtain this state.

Consider a time-dependent Hamiltonian H = H(t), and let state |Ψ (t)〉 evolve
over time according to H(t). The adiabatic theorem says that, if |Ψ (0)〉 is the
ground state of H(0), and if H(t)’s evolution is sufficiently slow, then |Ψ (t)〉 will
be the ground state of H(t) at all times t . The bounds on the evolution speed
are determined by the energy differences between H(t)’s ground-state and first
excited state, i.e., the difference between its smallest and second smallest eigen-
value when it is viewed as a matrix. Therefore, in order to construct the ground
state of a specific Hamiltonian H , we first start by devising another Hamiltonian
H ′ whose ground state |Ψ ′〉 is easy to prepare. We then slowly evolve our sys-
tem’s Hamiltonian from H ′ to H , usually in a linear fashion over time, by letting
H(t) = (1 − t/T )H ′ + (t/T )H , where T is the total run-time of the algorithm.
If T is large enough, then the adiabatic theorem guarantees that the state at time t
will be the ground state of H(t), leading to the solution, the ground state of H , at
time T . For the algorithm to be efficient, one has to pick H and H ′ such that the
gap of H(t) at all times t is at least inverse polynomial in the size of the problem,
so that the total running time T will be polynomial.

Farhi et al. set up adiabatic algorithms for N P-complete problems [22]. It has
been impossible so far to determine the gap analytically and the number of qubits
in numerical simulations is limited. However, this approach seems promising, even
though there is now mounting evidence that an adiabatic algorithm cannot solve
N P-complete problems efficiently. For instance, quantum unstructured search has
been implemented adiabatically and shown to have the same run-time as Grover’s
algorithm [42, 16]. It is not hard to see that an adiabatic algorithm can be simulated
efficiently with a quantum circuit [22] – one needs to implement a time-dependent
unitary that is given by a set of local Hamiltonians, each one acting only on a few
qubits. Recently it has been shown [2] that also any quantum circuit can be simu-
lated efficiently by an appropriate adiabatic algorithm; hence these two models of
computation are essentially equivalent. This means that a quantum algorithm can be
designed in each of the two models. The advantage of the adiabatic model is that
it deals with gaps of Hermitian matrices, an area that has been widely studied both
by solid-state physicists and probabilists. Hopefully this new toolbox will yield new
algorithms.

References

1. Aharonov, D., Ambainis, A., Kempe, J., et al.: Quantum walks on graphs. In: Proceedings
of the 33th ACM Symposium on Theory of Computing (STOC), pp. 50–59. ACM Press,
New York (2001) 338, 339

2. Aharonov, D., van Dam, W., Kempe, J., et al.: Adiabatic quantum computation is equivalent
to standard quantum computation. In: Proceedings of the 45th Annual IEEE Symposium on



Quantum Algorithms 341

Foundations of Computer Science (FOCS), pp. 42–51. IEEE Computer Society, Washington
(2004) 340

3. Aleliunas, R., Karp, R., Lipton, R., et al.: Random walks, universal traversal sequences, and
the time complexity of maze problems. In: Proceedings of the 20th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pp. 218–223. IEEE Computer Society,
Washington (1979) 338

4. Ambainis, A.: SIGACT News 35, 22 (2004) 339
5. Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings of the 45th

Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 22–31. IEEE
Computer Society, Washington (2004) 338, 339

6. Ambainis, A., Bach, E., Nayak, A., et al.: One-dimensional quantum walks. In: Proceedings
of the 33th Annual ACM Symposium on Theory of Computing (STOC), pp. 60–69. ACM
Press, New York (2001) 338

7. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of
the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1099–1108. ACM
Press, New York (2005) 339

8. Beals, R.: Quantum computation of Fourier transforms over symmetric groups. In: Proceed-
ings of the 29th Annual ACM Symposium on Theory of Computing (STOC), pp. 48–53.
ACM Press, New York (1997) 333

9. Bennett, Ch.: IBM J. Res. Dev. 17, 5225 (1973) 313
10. Bennett, C.H., Bernstein, E., Brassard, G., et al.: SIAM J. Sci. Comput. 26, 1510 (1997) 334
11. Bernstein, E., Vazirani, U.: SIAM J. Sci. Comput. 26, 1411 (1997) 325
12. Brassard, G., Hoyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free functions. In:

Proceedings of the 3rd Latin American Symposium on Theoretical Informatics (LATIN’98).
Lecture Notes in Computer Science, vol. 1380, p. 163. Springer, Heidelberg (1998) 337

13. Buhrman, H., Dürr, C., Heiligman, M., et al: SIAM J. Sci. Comput. 34, 1324 (2005) 338
14. Buhrman, H., Spalek, R.: Quantum verification of matrix products. In: Proceedings of the

17th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 880–889. ACM Press,
Miami (2006) 339

15. Childs, A.M., Cleve, R., Deotto, E., et al.: Exponential algorithmic speedup by a quantum
walk. In: Proceedings of the 35th Annual ACM Symposium on the Theory of Computing
(STOC), pp. 59–68. ACM Press, New York (2003) 339

16. van Dam, W., Mosca, M., Vazirani, U.: How powerful is adiabatic quantum computation?
In: Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS), IEEE Computer Society, Washington, pp. 279–287 (2001) 340

17. Deutsch, D.: Proc. R. Soc. Lond. A 400, 97 (1985) 309, 316
18. Deutsch, D., Barenco, A., Ekert, A.: Proc. R. Soc. Lond. A 449, 669 (1995) 314
19. Deutsch, D., Jozsa, R.: Proc. R. Soc. Lond. A 439, 553 (1992) 324
20. Di Vincenzo, D.P.: Phys. Rev. A 51, 1015 (1995) 314
21. Dürr, C., Heiligman, M., Høyer, P., et al.: Quantum query complexity of some graph problems.

In: Proceedings of the 31st International Colloquium on Automata, Languages, and Program-
ming (ICALP). Lecture Notes in Computer Science, vol. 3142, p. 481. Springer, Heidelberg
(2004) 338

22. Farhi, E., Goldstone, J., Gutmann, S., et al.: Science 292, 472 (2001) 339, 340
23. Farhi, E., Gutmann, S.: Phys. Rev. A 58, 915 (1998) 338
24. Feynman, R.: Int. J. Theor. Phys. 21, 467 (1982) 309
25. Feynman, R.: Opt. News 11, 11 (1985) 309
26. Friedl, K., Ivanyos, G., Magniez, F., et al.: Hidden translation and orbit coset in quantum

computing. In: Proceedings of the 35th ACM Symposium on Theory of Computing (STOC),
pp. 1–9. ACM Press, New York (2003) 331

27. Grigni, M., Schulman, L., Vazirani, M., et al.: Quantum mechanical algorithms for the non-
abelian hidden subgroup problem. In: Proceedings of the 33rd ACM Symposium on the The-
ory of Computing (STOC), pp. 68–74. ACM Press, New York (2001) 333



342 J. Kempe and T. Vidick

28. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of
the 28th ACM Symposium on the Theory of Computing (STOC), pp. 212–219. ACM Press,
Philadelphia (1996) 334

29. Hallgren, S.: Polynomial-time quantum algorithms for Pell’s equation and the principal ideal
problem. In: Proceedings of the 34th ACM Symposium on the Theory of Computing (STOC),
pp. 653–658. ACM Press, New York. (2002) 331

30. Hallgren, S., Moore, C., Rötteler, M., et al.: Limitations of quantum coset states for graph
isomorphism. In: Proceedings of the 38th ACM Symposium on the Theory of Computing
(STOC), pp. 604–617. ACM Press, New York (2006) 333

31. Hallgren, S., Russell, A., Ta-Shma, A.: Normal subgroup reconstruction and quantum com-
putation using group representations. In: Proceedings of the 32nd ACM Symposium on the
Theory of Computing (STOC), pp. 627–635. ACM Press, New York (2000) 333

32. Kempe, J.: Contemp. Phys. 44, 302 (2003) 339
33. Kempe, J., Shalev, A.: The hidden subgroup problem and permutation group theory.

In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 1118–1125. ACM Press, New York (2005) 333

34. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation. Graduate
Series in Mathematics, vol. 47. AMS, Providence (2002) 310, 329

35. Kuperberg, G.: SIAM J. Sci. Comput. 35, 170 (2005) 333
36. Magniez, F., Nayak, A.: Quantum complexity of testing group commutativity. In: Proceedings

of the 32nd International Colloquium on Automata, Languages, and Programming (ICALP),
pp. 1312–1325. Lecture notes in computer science 3580, Springer-Verlag, Berlin (2005) 339

37. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem.
In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 1109–1117. ACM Press, New York (2005) 339

38. Moore, C., Russell, A., Schulman, L.: The symmetric group defies strong Fourier sampling.
In: Proceedings of the 46th IEEE Symposium on Foundations of Computer Science (FOCS).
IEEE Computer Society, Washington (2005) 333

39. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge (2000) 310, 316, 329

40. Preskill, J.: Quantum information and computation. Lecture Notes http://www.theory.caltech.
edu/people/preskill/ph229/ 329

41. Regev, O.: Quantum computation and lattice problems. In: Proceedings of the 43rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 520–529. IEEE Com-
puter Society Press, Los Alamitos (2002) 333

42. Roland, J., Cerf, N.: Phys. Rev. A 65, 042308 (2002) 340
43. Shenvi, N., Kempe, J., Whaley, K.B.: Phys. Rev. A 67, 052307 (2003) 339
44. Shor, P.W.: Algorithms for quantum computation: Discrete log and factoring. In: Proceed-

ings of the 35th IEEE Annual Symposium on the Foundations of Computer Science (FOCS),
pp. 124–134. IEEE Computer Society, Los Alamitos (1994) 309, 326

45. Shor, P.W.: SIAM J. Comput. 26, 1484 (1997) 331
46. Simon, D.: SIAM J. Comput. 26, 1474 (1997) 325



Index

A
Abelian Fourier transform, 320
Abelian groups, 310, 331
Accessible information, 296
σ -additive measures, 80
Adiabatic theorem, 340
Affine maps, 89
σ -algebras, 12, 80
Algebras

bicommutant, 84
center, 85
commutant, 83
commutative (Abelian), 83
dual, 89
factors, 85
matrix, 82
opposite, 92
unital, 81

Algorithms
efficient, 311

Ancilla systems, 110, 187, 283
qubits, 314

Annihilation operators, 153, 225
Anti-unitary transformations, 171
Aspect experiment, 70
Asymptotic equipartition property (AEP), 51
Atom-atom entanglement, 269
Atom-field Hamiltonian, 264

B
BB84 protocol, 243, 280

entanglement-based, 295
Beam splitter, 225

polarizing (PBS), 226
quantum, 226

Bell
inequalities, 65, 220, 285

detection loophole, 224
four variables, 71

loophole-free tests, 224
non-locality, 72
three variables, 69

states, 105, 114, 240, 298
Bernoulli sources, 46
Binary entropy, 181
Bi-photons, 226

phase-momentum entanglement, 226
Birefringence, 227, 229, 230, 245
Bit, 310

string, 310
scalar product, 310

Black box model, 317
Bloch equations, 259
Bloch sphere, 13, 87, 260, 285

dynamics, 260
Bloch vector, 260
Block positivity, 123
Block-coding, 47
Block-matrix representation, 22
Boltzmann principle, 169
Boolean functions, 312
Borel subsets, 12
Bose-Einstein condensation, 171
Bose-Einstein statistics, 170
Bosonic fields, 159
Bosons, 165, 225
Bound entanglement, 305
B92 protocol, 280, 286

C
Calderbank-Steane-Shor (CSS) code, 294
Canonical anti-commutation relations (CAR),

173
Canonical commutation relations (CCR), 152
Canonical ensemble, 169
Canonical quantization

CAR, 165

F. Benatti et al.: Index. Lect. Notes Phys. 808, 343–350 (2010)
DOI 10.1007/978-3-642-11914-9 c© Springer-Verlag Berlin Heidelberg 2010



344 Index

CAR relations, 172
CCR, 165

Cauchy-Schwartz inequality, 2
operations, 96
operators, 28

Cavity QED, 269
CCR, 225
Channels

capacity, 56, 184
discrete, 182
Gaussian, 182
memoryless, 54, 182

symmetric, 55
noisy, 54
quantum, 194

Chebishev inequality, 48, 52
Chemical potential, 170
Choi matrix, 121, 140
CHSH inequality, 285
Classical algorithms

deterministic, 318
probabilistic, 325

Classical circuits, 312
Classical-classical-quantum (ccq) states, 296
Classical computation

universal, 313
Classical computers, 309
Classical information, 66

bit, 66
Classical probability

commuting projections, 76
Classical-quantum (cq) states, 296
Clauser-Horn inequality, 222
Clauser-Horne-Shimony-Holt (CHSH)

inequality, 224, 285
Cloning strategies, 291
CNOT

destructive, 237
gate, 107, 232, 235, 272
inverted, 315
matrix, 107, 114
probabilistic, 237
transformation, 107

Codes, 47
classical

linear, 293
code-words, 47, 183

length, 55
CSS, 292
dual, 294
fixed length, 47, 181
variable length, 47, 181

Coherences, 257

Coherent attacks, 290
Coherent control, 255
Coherent states, 155, 244

Bosons, 167
classical behavior, 155
exponential vectors, 166
overcompleteness, 155
Posissonian distribution, 155
squeezed, 157, 244

Coherent superpositions, 253
Communication channels, 54
Completely positive maps, 22, 90, 110, 194
Completely positive trace-preserving (CPT)

maps, 117, 178
Complexity classes, 312

NP-complete problems, 312
NP problems, 312
P problems, 312

Compression rate
quantum, 188

Computational basis, 311
Conditional entropy, 38, 303
Conditional probabilities, 38, 182
Contra-variant picture, 99
Controlled-NOT operation (CNOT), 114
Control-qubit, 237
Convergence in probability, 51
Convex hull, 78
Convex set, 78, 111, 178
Correlation matrix, 171
Coupling to classical sources, 166
Coupling to heat baths, 166
Covariant picture, 102
Co-prime integers, 329
Creation operators, 153, 225
Cryptography, 278

ciphertext, 279
cryptosystems, 278
plaintext, 279
quantum, 280

Cryptosystems
Vernam cipher, 279

D
Data compression, 48, 181

quantum, 187
Decoders, 45
Decoding rules, 58
Decoherence, 135, 177, 195, 228, 255
Decoherence-free

states, 248
subspaces, 255

Decoherence-free propagation, 247



Index 345

Decoy states, 302
Dense coding, 67, 108, 240
Density matrices, 13, 77, 111, 177

reduced, 18, 112, 178
Dependencies, 94
Deutsch circuit, 318
Diffusion transform gate, 334
Dilation, 89
Distillable key rate, 306
Distinguishability, 284

Bell states, 233
classical states, 176
Holevo χ-quantity, 210
orthogonal states, 177

Double commutant theorem, 84
Dual maps, 89, 121
Duality, 121

E
Eavesdropping strategies, 284, 288
Effective Hamiltonian, 218, 272
Efficiently solvable problems, 311
Einstein-Podolski-Rosen argument (EPR),

207, 221
Ekert protocol, 243, 280, 285
Electromagnetically induced transparency

(EIT), 234
Electromagnetic field, 164

Hamiltonian density, 216
Embedding theorem, 97
Encoders, 45
Entangled photons, 215

energy-time, 226
phase-momentum, 219
polarization, 229
time-bin, 228

Entanglement, 89, 109, 256
bipartite, 109
bound, 131
cost, 132
detection, 129
distillation, 131, 292
EPR pairs, 207
multipartite, 127
witness, 124, 305

Entanglement cost, 304
Entanglement of formation, 133, 304
Entanglement measures, 133, 307

concurrence, 133
Entropy, 34

concavity, 35
differential, 36

Environment, 20, 110, 177, 195

EPR
Bohm’s formulation, 221
elements of reality, 221

EPR pairs, 242
Error correction, 281, 282, 293

parity check matrix, 293
quantum, 294
syndrome, 293

Error probability, 55
Errors

quantum, 195
locally independent, 196
sequentially independent, 196

Events, 34, 80
independent, 34

Extremal points, 78, 111, 178

F
Factoring algorithms, 309

polynomial time, 310
Factoring problem, 279
Fano inequality, 41

generalized, 43
Fast Fourier transform (FFT), 321
Fermi-Dirac statistics, 174
Fermions, 165, 172

thermal states, 174
Fidelity, 29, 188, 246, 289, 297
Flip operator, 124
Floquet picture, 267
Fock number states, 157
Fock space, 161
Fock states, 263
Fourier sampling, 332

G
Garbage removal, 314
Gaussian states, 171

entangled, 171
GHZ states, 127

polarization entangled, 231
Gibbs inequality, 39
Glauber-Sudarshan representation, 157
Gleason theorem, 81
Gran-canonical ensemble, 170
Greatest common divisor, 329
Group

Abelian, 319
character, 320

H
Hadamard

gate, 107, 242, 315
matrix, 107, 114



346 Index

product, 23
transformation, 107, 281, 315

Hamiltonian, 20
Heisenberg canonical quantization, 152
Heisenberg picture, 90, 135, 153
Heisenberg principle, 98, 100, 101
Heisenberg uncertainty relations, 156
Heralded single photon sources, 219
Hidden subgroup problem, 331
Hidden variables, 65
Hilbert-Schmidt scalar product, 28

norm, 28
Hilbert spaces, 1, 80

algebraic tensor products, 6
antisymmetric tensor products, 7, 173
bra-ket notation, 2
canonical basis, 3
dual, 92
norm, 2
orthogonal expansions, 4
orthogonal vectors, 3
orthonormal bases, 3
scalar product, 1, 81
symmetric tensor products, 8, 162
tensor products, 6, 311

Holes, 174
Holevo
χ quantity, 202
bound, 202

Holevo capacity
additivity, 211
superadditivity, 212

Holevo-Schumacher-Westmoreland (HSW)
theorem, 210

Homodyne detection, 244, 248

I
Individual attacks, 288
Information, 34
Information of formation, 304
Information rate, 49
Information sources, 45

memoryless, 180
quantum, 187

Intrinsic information, 303
Isotropic states, 125

J
Jaynes-Cummings interaction, 266
Jaynes-Cummings model, 262
Jensen inequality, 28
Joint entropy, 37
Joint probabilities, 37
Jordan-Wigner transformation, 173

K
Kerr crystals, 234
Kossakowski matrix, 135
Kraus operators, 22, 136, 198
Kraus representation, 22, 89, 110

L
Lattice states, 145
LHV theories

realistic, 222
Linear operators, 4

adjoint, 5, 152
eigenvalues, 8, 153
eigenvectors, 8, 153
matrices, 4
modulus, 9
norm, 4, 81
partial isometries, 94
positive, 9, 77, 153
projections, 4, 75
self-adjoint, 5
spectrum, 8, 103, 153
square root, 9
support projection, 27
unitary, 5

Linear optics, 235
Liouville-von Neumann equation, 134
Local hidden variables (LHV) theories, 221
Locality, 72
Local realism, 72, 220
LOCC operations

dilution, 132
distillation, 131

Logical gates, 312
AND, 312
CNOT, 315
FANOUT, 314
NAND, 312
NOT, 312
OR, 312
quantum
π/8, 316
one-qubit, 316
two-qubit gates, 316

Toffoli, 313
universal, 313

Log-likelihood, 50

M
Mach-Zender interferometers, 226

Franson scheme, 226
Macroscopic scale, 255
Marginal distributions, 18, 38



Index 347

Markov sources, 46
stationary, 46

Master equation, 135
Lindblad form, 135

Matrix convexity, 11
Matrix monotone functions, 10
Maximally entangled states, 105, 116, 292
Measurable subsets, 12, 80
Measurement, 282
Measurement processes, 100

quantum, 15, 110, 311
accessible information, 200
joint, 104
partial, 311
POVM, 15, 179, 286, 312
von Neumann, 102

Mesoscopic scale, 255
Momentum representation, 156
Monotonicity

of fidelity, 30
Multiplication theorem, 97
Mutual entropy

conditional, 303
Mutual information, 38, 184, 207, 289
Mutually unbiased orthonormal basis, 287

N
No-classical coding, 100
No-cloning, 67, 237, 238, 280

theorem, 99
No-faster than light transmission, 237
Noisy channels

coding, 54, 181
error correction, 54, 182

Non-classical states, 157
Non-linear optics, 234
Non-local effects, 227
Normal ordering, 153
NPT states, 124
Number operator, 153

O
Observables, 14

expectation values, 16, 222
local, 111
self-adjoint operators, 14

Operation elements, 21
Operations

classical, 88
coding, 100
decoding, 100
LOCC, 131
quantum, 90, 110, 117, 178

Operator-sum representation, 21
Oracles, 317

P
Parallelogram law, 3
Parameter estimation, 282, 286
Parametric down conversion (PDC), 215

conjugated photons, 217
type II, 218

Partial isometries
final space, 94
initial space, 94

Partial trace, 112, 178, 239
Partial transposition, 124
Particles, 174
Partition sums, 169
Pauli matrices, 14, 86, 173, 195, 264, 281
Pauli operators, 197
PDC

bi-photon, 216
idler photon, 216, 218
pump photon, 218
signal photon, 216, 218
type I, 218
type II

Hamiltonian, 246
Peres criterion, 124
Peres-Horodecki criterion, 127
Phase, 13
Phase-entanglement, 228
Phase-transitions, 171
Phonons, 165, 272
Photon number splitting (PNS) attacks, 301
Photons, 68, 86
Polarizers, 68
Polarizing beam splitter (PBS), 235
Pooling inequality, 40
Position representation, 156
Positive maps, 110

decomposable, 128
Positive operator-valued measures (POVM), 12
Positivity under partial transposition (PPT),

124, 128
Post-selection, 228
POVM

Kraus representation, 92, 110, 198
projection-valued measures, 12, 312

PPT entangled states, 129
PPT states, 124
Preparation, 282
Privacy amplification, 282, 286
Probability density, 36



348 Index

Probability distributions, 34, 80
discrete, 34
expectations, 34, 68

Probability space, 66
Projective measurement, 239

Q
Quadrature operators, 157, 248
Quantum algorithms, 309

adiabatic, 340
Deutsch-Josza, 310
Grover, 310

unstructured search, 334
Shor, 309
Simon, 325

Quantum channels, 66, 179, 281
amplitude damping, 199
bit-flip, 198
classical capacity, 208
depolarizing, 25, 199
Holevo capacity, 210
memoryless, 194
noisy, 179
Pauli, 24
product state capacity, 210

Quantum circuits, 312
adiabatic quantum algorithms, 340
initialization, 312
measurement process, 312
unitary dynamics, 312

Quantum coin toss, 86
Quantum complex amplitude, 152
Quantum computation, 20, 67
Quantum computers

quantum circuit models, 309
quantum Turing machines, 309
universal, 309

Quantum conditional entropy, 185
Quantum copier, 98
Quantum cryptography, 66

entanglement-based protocols, 280
prepare-and-measure protocols, 280

Quantum errors, 244
Quantum fields

local structure, 163
smeared operators, 163

Quantum Fourier transform (QFT), 322
Quantum gates, 20
Quantum harmonic oscillator, 152
Quantum impossibilities, 98, 237
Quantum information, 66

qubit, 66
Quantum information processing, 255

Quantum information sources
memoryless, 189

Quantum joint entropy, 185
Quantum key distribution (QKD), 243, 280
Quantum measurement process, 98
Quantum metrology, 219, 247
Quantum mutual information, 185

discarding systems, 186
quantum operations, 187

Quantum noise, 136, 255
Quantum novelties, 104, 237
Quantum operations

n-fold controlled, 316
Quantum phase gate

controlled, 233, 273
Kerr controlled, 233

Quantum probability, 66
Quantum probability spaces, 81
Quantum registers, 255

scalability, 255
Quantum relative entropy, 27, 117

joint convexity, 117
monotonicity, 117
positivity, 117
Uhlmann monotonicity, 27, 205

Quantum states
entangled, 111
expectation functionals, 81
expectation values, 16, 178
mixed, 14, 77, 111, 177
pure, 13, 77, 178
separable, 111

Quantum swapping, 243
Quantum systems

composite, 16, 111, 185, 255
open, 110, 177, 255

Quantum walks, 338
Qubit, 13, 254, 282, 309

double-well potentials, 254
energy eigenstates, 254
logical, 254
photonic, 234
polarization states, 75, 176, 254

Qudits, 244
Query complexity, 317
Ququats, 244
Qutrits, 244

R
Rabi oscillations, 259

vacuum, 267
Random variables (RV), 34

binary, 75



Index 349

conditionally independent, 41
discrete, 37
IID, 180

weak law of large numbers, 52
IID sequences, 52
Independent

Identically Distributed (IID), 46
independent, 39
sequences, 51
vectors, 43

Randomness, 37
Reduced density matrices, 239
Reduced dynamics, 110
Relative entropy, 38
Relative entropy of entanglement, 307
Relative modular operator, 28
Reliable transmission, 45
Rivest-Shamir-Adleman (RSA) protocol, 279
Rotating-wave approximation (RWA), 258
RSA protocol, 309

S
Schatten decomposition, 26
Schmidt coefficients, 112
Schmidt decomposition, 15, 112
Schrödinger picture, 20, 99, 135
Schumacher’s quantum coding theorem, 189
Schur lemma, 320
Schwartz positivity, 96
Secret key establishment, 282
Secret key rate, 303
Secure keys, 292
Shannon entropy, 37, 115, 180, 288

Subadditivity, 40
Shannon’s first coding theorem, 51, 180
Shannon’s second coding theorem, 59, 184
Shor’s algorithm, 233
Sifting, 282
Simon criterion, 171
Simplex, 78
Six state protocol, 287
Source coding, 45
Space of states, 78, 89
Spectral decomposition, 14
Spectral measures, 13
Spectral theorem, 13
Spin-Boson Hamiltonian, 254
Squeezed states, 157
Stark shift, 259
State-dependent phase-shift, 240
State-flip, 240
State purification, 113
State space, 111

State transformations, 20, 110
convex set, 22
extremal points, 22

Statistical operators, 14
Stimulated absorption, 264
Stimulated emission, 264
Stinespring theorem, 92
Stochastic equivalence principle, 89
Stochastic processes, 66
Stochastic variables, 111
Subgroup

cosets, 331
Super-selection rules, 165
Symplectic matrix, 171

T
Teleportation, 67, 105, 233, 241
Tensor products of Hilbert spaces, 78
Tensor products of operators, 79
Thermal states, 169
Thermodynamic limit, 170
Time development, 19
Time-ordering, 168
Totally symmetric state, 115
Trace, 10, 178, 239

cyclicity, 10, 204
partial, 19

Trace map, 128
Trace-norm, 27
Trace-preserving maps, 22
Transmission channels, 45
Transmission rates, 55

quantum, 184
reliable, 55

Transposition, 18, 90, 110
Trapped cold atoms, 272
Trapped ions, 158, 272
Typical sequences, 190
Typical subspaces, 189

theorem, 190

U
Uncertainty relations, 157
Unconditionally secure protocols, 297
Unitary propagator, 20
Universal quantum computation

reversible, 314
Universal quantum gates, 314

V
Vacuum, 225
Vacuum state, 153

squeezed, 157



350 Index

Von Neumann entropy, 26, 37, 115, 170, 185
axiomatic characterization, 26
concavity, 211
conditioning, 186
continuity, 27
convexity, 118
mixing property, 26
strong subadditivity, 29, 118, 186, 203

subadditivity, 118
triangle inequality, 118

W
Werner states, 130
Weyl operators, 154
Weyl relations, 154
Woronowicz theorem, 128


	Cover
	Quantum Information,Computation andCryptography
	Lecture Notes in Physics 808
	ISBN 3642119131
	Preface
	Contents

	Hilbert Space Methods for Quantum Mechanics
	D. Petz
	1  Hilbert Spaces
	2  Postulates of Quantum Mechanics
	3  Some Applications
	References

	Classical Information Theory
	Y. Suhov
	1  Entropy
	2  Source Coding
	3  Channel Coding
	4  Bibliographical Notes
	References

	Quantum Probability and Quantum Information Theory
	H. Maassen
	1  Introduction
	2  Why Classical Probability Does Not Suffice
	3  Toward a Mathematical Model
	4  Quantum Probability
	5  Operations on Probability Spaces
	6  Quantum Impossibilities
	7  Quantum Novelties
	References

	Bipartite Quantum Entanglement
	F. Benatti
	1  Introduction
	2  Bipartite Entanglement
	3  Entanglement Detection
	4  Complete Positivity, Open Quantum Systems, and Entanglement
	References

	Field-Theoretical Methods
	R. Alicki
	1  Introduction
	2  The Quantum Harmonic Oscillator
	3  Quantum Bosonic Fields
	4  Coherent and Thermal States for Bosons
	5  Second Quantization of Fermions
	6  Further Reading
	References

	Quantum Entropy and Information
	Nilanjana Datta
	1  Introduction
	2  Preliminaries
	3  Rudiments of Classical Information Theory
	4  Quantum Entropy
	5  Data Compression in Quantum Information Theory
	6  Quantum Channels
	7  Accessible Information and the Holevo Bound
	References

	Photonic Realization of Quantum Information Protocols
	M. Genovese
	1  Introduction
	2  Photon Entanglement
	3  Optical Realizations of Quantum Information Protocols
	4  Optical Quantum Computation Protocols
	5  Quantum Communication
	References

	Physical Realizations of Quantum Information
	F. de Melo and A. Buchleitner
	1  Introduction
	2  A Single Qubit in Interaction with the Radiation Field
	3  Qubit Entanglement Through the Jaynes--Cummings Interaction
	References

	Quantum Cryptography
	D. Bruß and T. Meyer
	1  Introduction
	2  Classical Cryptography
	3  Quantum Cryptography
	4  Eavesdropping Strategies
	5  Unconditional Security of BB84
	6  Defense Against Eavesdropping with Photon NumberSplitting (PNS) Attacks
	7  Classical Upper Bounds on the Secret Key Rate
	8  The Role of Entanglement in QKD
	9  Problems/Exercises
	References

	Quantum Algorithms
	J. Kempe and T. Vidick
	1  Notations
	2  The Quantum Circuit Model
	3  First Algorithms
	4  The Quantum Fourier Transform
	5  Deutsch--Josza and Simon's Algorithms
	6  Factoring in Polynomial Time
	7  The Hidden Subgroup Problem
	8  Grover's Algorithm for Unstructured Search
	9  Developments
	References

	Index



